30-Sep-2019 - Ruhr-Universität Bochum

Converting carbon dioxide to valuable resources with the help of nanoparticles

Enzymes use cascade reactions to produce complex molecules from comparatively simple raw materials. Researchers have now copied this principle.

An international research team has used nanoparticles to convert carbon dioxide into valuable raw materials. Scientists at Ruhr-Universität Bochum in Germany and the University of New South Wales in Australia have adopted the principle from enzymes that produce complex molecules in multi-step reactions. The team transferred this mechanism to metallic nanoparticles, also known as nanozymes. The chemists used carbon dioxide to produce ethanol and propanol, which are common raw materials for the chemical industry.

The team led by Professor Wolfgang Schuhmann from the Center for Electrochemistry in Bochum and Professor Corina Andronescu from the University of Duisburg-Essen, together with the Australian team led by Professor Justin Gooding and Professor Richard Tilley, reported in the Journal of the American Chemical Society on 25 August 2019.

“Transferring the cascade reactions of the enzymes to catalytically active nanoparticles could be a decisive step in the design of catalysts,” says Wolfgang Schuhmann.

Particle with two active centres

Enzymes have different active centres for cascade reactions, which are specialised in certain reaction steps. For example, a single enzyme can produce a complex product from a relatively simple starting material. In order to imitate this concept, the researchers synthesised a particle with a silver core surrounded by a porous layer of copper. The silver core serves as the first active centre, the copper layer as the second. Intermediate products formed at the silver core then react in the copper layer to form more complex molecules, which ultimately leave the particle.

In the present work, the German-Australian team showed that the electrochemical reduction of carbon dioxide can take place with the help of the nanozymes. Several reaction steps on the silver core and copper shell transform the starting material into ethanol or propanol.

“There are also other nanoparticles that can produce these products from CO2 without the cascade principle,” says Wolfgang Schuhmann. “However, they require considerably more energy.”

The researchers now want to further develop the concept of the cascade reaction in nanoparticles in order to be able to selectively produce even more valuable products such as ethylene or butanol.

Facts, background information, dossiers
More about RUB
  • News

    Unexpected energy storage capability where water meets metal surfaces

    A new method can measure the electrical (re-)charging of boundary layers between very small, metallic particles and aqueous solutions and understand it at a molecular level. Researchers from the RESOLV Cluster of Excellence at Ruhr-Universität Bochum (RUB) have used current and voltage meas ... more

    A treasure map for the realm of electrocatalysts

    Efficient electrocatalysts, which are needed for the production of green hydrogen, for example, are hidden in materials composed of five or more elements. A team from Ruhr-Universität Bochum (RUB) and the University of Copenhagen has developed an efficient method for identifying promising c ... more

    Catalyst surface analysed at atomic resolution

    Catalyst surfaces have rarely been imaged in such detail before. And yet, every single atom can play a decisive role in catalytic activity. A German-Chinese research team has visualised the three-dimensional structure of the surface of catalyst nanoparticles at atomic resolution. This struc ... more

More about University of New South Wales