12-Jun-2020 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Surprisingly strong and deformable silicon

The strength of lithographically produced silicon pillars even reached values that one would only expect only in theory

Researchers at ETH and Empa have shown that tiny objects can be made from silicon that are much more deformable and stronger than previously thought. In this way, sensors in smartphones could be made smaller and more robust.

Since the invention of the MOSFET transistor sixty year ago, the chemical element silicon on which it is based has become an integral part of modern life. It ushered in the computer age, and by now the MOSFET has become the most produced device in history. Silicon is readily available, cheap, and has ideal electrical properties, but also one important drawback: it is very brittle and, therefore, breaks easily. This can become a problem when trying to make micro-​electro-mechanical systems (MEMS) from silicon, such as the acceleration sensors in modern smartphones.

At ETH in Zurich, a team led by Jeff Wheeler, Senior Scientist at the Laboratory for Nanometallurgy, together with colleagues at the Laboratory for Mechanics of Materials and Nanostructures at Empa, has shown that, under certain conditions, silicon can be much stronger and more deformable than was previously thought.

Ten-​year effort

“This is the result of a ten-​year effort”, says Wheeler, who worked as a researcher at Empa prior to his career at ETH. To understand how tiny silicon structures can deform, within the framework of an SNF project, he took a closer look at a widely used production method: the focused ion beam. Such a beam of charged particles can mill desired shapes into a silicon wafer very effectively, but in doing so leaves behind distinct traces in the form of surface damage and defects, which cause the material to break more easily.

Lithography with final cleaning

Wheeler and his collaborators had the idea to try a particular type of lithography as an alternative to the ion beam method. “First, we produce the desired structures – tiny pillars in our case – by etching away un-​masked material from the areas of the silicon surface using a gas plasma”, explains Ming Chen, a former PhD student in Wheeler’s group. In a further step, the surface of the pillars, some of which are narrower than a hundred nanometres, are first oxidized and then cleaned by completely removing the oxide layer with a strong acid.

Chen then studied the strength and plastic deformability of silicon pillars of different widths with an electron microscope and compared the two production methods. To that end, he pressed a tiny diamond punch into the pillars and studied their deformation behaviour in the electron microscope.

Striking results

The results were striking: the pillars that had been milled with an ion beam collapsed at a width of less than half a micrometre. By contrast, the pillars produced by lithography only suffered brittle fractures at widths above four micrometres, while thinner pillars were able to withstand the strain much better. “These lithographic silicon pillars can deform at sizes ten times greater than what we’ve seen in ion beam-​machined silicon with the same crystal orientation, with double the strength!”, Wheeler summarizes the results of his experiments.

The strength of the lithographically produced pillars even reached values that one would only expect only in theory, for ideal crystals. What makes the difference here, says Wheeler, is the absolute purity of the surfaces of the pillars, which is achieved by the final cleaning step. This results in a much smaller number of surface defects from which a fracture could originate. With the assistance of Alla Sologubenko, a researcher with the microscopy centre ScopeM at ETH, this additional deformability also allowed the team to observe a striking change in deformation mechanisms at smaller sizes. This revealed new details on how silicon can deform.

Applications in smartphones

The results obtained by ETH researchers could have an immediate impact on the fabrication of silicon MEMS, Wheeler says: “In this way, the gyroscopes used in smartphones, which detect rotations of the device, could be made even smaller and more robust.” That shouldn’t be too difficult to realize, given that industry is already using the combination of etching and cleaning Wheeler and his colleagues investigated. The method could also be applied to other materials having crystal structures similar to that of silicon, the researchers believe. Moreover, more elastic silicon could also be used to further improve the electrical properties of the material for certain applications. By applying a large strain of the semiconductor the mobility of its electrons can be increased, which can lead, for instance, to shorter switching times. So far, one had to produce nanowires to achieve that, but now this could be done directly using structures integrated into a semiconductor chip.

Facts, background information, dossiers
More about ETH Zürich
  • News

    A biochemical random number

    True random numbers are required in fields as diverse as slot machines and data encryption. These numbers need to be truly random, such that they cannot even be predicted by people with detailed knowledge of the method used to generate them. As a rule, they are generated using physical meth ... more

    Decoding the way catalysts work

    Splitting water into hydrogen and oxygen is an important chemical reaction, especially considering that the use of hydrogen as an energy source in sustainable mobility in the future. An international research team has now decoded how one of the catalysts used in this reaction works. Hydroge ... more

    A 40-year-old catalyst unveils its secrets

    “Titanium silicalite-1” (TS-1) is not a new catalyst: It has been almost 40 years since its development and the discovery of its ability to convert propylene into propylene oxide, an important basic chemical in the chemical industry. Now, by combining various methods, a team of scientists f ... more

  • Videos

    Oxybromination of methane over vanadium phosphate

    ETH Zurich scientists have discovered a new catalyst that allows the easy conversion of natural gas constituents into precursors for the production of fuels or complex chemicals, such as polymers or pharmaceuticals. The new catalyst is extremely stable and results in fewer unwanted by-produ ... more

More about Empa
  • News

    Turning streetwear into solar power plants

    Empa researchers succeeded in developing a material that works like a luminescent solar concentrator and can even be applied to textiles. This opens up numerous possibilities for producing energy directly where it is needed, i.e. in the use of everyday electronics. Our hunger for energy is ... more

    The Transistor out of the Printer

    Empa researchers are working on electronics that come out of printers. This makes it possible to produce the circuits on all sorts of substrates, such as paper or plastic film – but there are still some hurdles to overcome. Imagine being able to easily print electronics on any surface. Toda ... more

    Biofuels and sophisticated materials cycles thanks to bio-templating

    Blue-green algae are among the oldest living creatures on Earth and have perfected the use of sunlight over billions of years. Empa scientists have now equipped these humble unicellular organisms with semiconductor coatings to create mini power plants, which supply biofuels and are photocat ... more

  • Videos

    A water-based, rechargeable battery

    First step to produce a cheap aquous electrolyte for powerful rechargeable batteries: Seven grams of sodium FSI (precise name: sodium bis(fluorosulfonyl)imide) and one gram of water produce a clear saline solution with an electrochemical stability of up to 2.6 volts – twice as much as other ... more