12-Jun-2020 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Surprisingly strong and deformable silicon

The strength of lithographically produced silicon pillars even reached values that one would only expect only in theory

Researchers at ETH and Empa have shown that tiny objects can be made from silicon that are much more deformable and stronger than previously thought. In this way, sensors in smartphones could be made smaller and more robust.

Since the invention of the MOSFET transistor sixty year ago, the chemical element silicon on which it is based has become an integral part of modern life. It ushered in the computer age, and by now the MOSFET has become the most produced device in history. Silicon is readily available, cheap, and has ideal electrical properties, but also one important drawback: it is very brittle and, therefore, breaks easily. This can become a problem when trying to make micro-​electro-mechanical systems (MEMS) from silicon, such as the acceleration sensors in modern smartphones.

At ETH in Zurich, a team led by Jeff Wheeler, Senior Scientist at the Laboratory for Nanometallurgy, together with colleagues at the Laboratory for Mechanics of Materials and Nanostructures at Empa, has shown that, under certain conditions, silicon can be much stronger and more deformable than was previously thought.

Ten-​year effort

“This is the result of a ten-​year effort”, says Wheeler, who worked as a researcher at Empa prior to his career at ETH. To understand how tiny silicon structures can deform, within the framework of an SNF project, he took a closer look at a widely used production method: the focused ion beam. Such a beam of charged particles can mill desired shapes into a silicon wafer very effectively, but in doing so leaves behind distinct traces in the form of surface damage and defects, which cause the material to break more easily.

Lithography with final cleaning

Wheeler and his collaborators had the idea to try a particular type of lithography as an alternative to the ion beam method. “First, we produce the desired structures – tiny pillars in our case – by etching away un-​masked material from the areas of the silicon surface using a gas plasma”, explains Ming Chen, a former PhD student in Wheeler’s group. In a further step, the surface of the pillars, some of which are narrower than a hundred nanometres, are first oxidized and then cleaned by completely removing the oxide layer with a strong acid.

Chen then studied the strength and plastic deformability of silicon pillars of different widths with an electron microscope and compared the two production methods. To that end, he pressed a tiny diamond punch into the pillars and studied their deformation behaviour in the electron microscope.

Striking results

The results were striking: the pillars that had been milled with an ion beam collapsed at a width of less than half a micrometre. By contrast, the pillars produced by lithography only suffered brittle fractures at widths above four micrometres, while thinner pillars were able to withstand the strain much better. “These lithographic silicon pillars can deform at sizes ten times greater than what we’ve seen in ion beam-​machined silicon with the same crystal orientation, with double the strength!”, Wheeler summarizes the results of his experiments.

The strength of the lithographically produced pillars even reached values that one would only expect only in theory, for ideal crystals. What makes the difference here, says Wheeler, is the absolute purity of the surfaces of the pillars, which is achieved by the final cleaning step. This results in a much smaller number of surface defects from which a fracture could originate. With the assistance of Alla Sologubenko, a researcher with the microscopy centre ScopeM at ETH, this additional deformability also allowed the team to observe a striking change in deformation mechanisms at smaller sizes. This revealed new details on how silicon can deform.

Applications in smartphones

The results obtained by ETH researchers could have an immediate impact on the fabrication of silicon MEMS, Wheeler says: “In this way, the gyroscopes used in smartphones, which detect rotations of the device, could be made even smaller and more robust.” That shouldn’t be too difficult to realize, given that industry is already using the combination of etching and cleaning Wheeler and his colleagues investigated. The method could also be applied to other materials having crystal structures similar to that of silicon, the researchers believe. Moreover, more elastic silicon could also be used to further improve the electrical properties of the material for certain applications. By applying a large strain of the semiconductor the mobility of its electrons can be increased, which can lead, for instance, to shorter switching times. So far, one had to produce nanowires to achieve that, but now this could be done directly using structures integrated into a semiconductor chip.

Facts, background information, dossiers
More about ETH Zürich
  • News

    A new theory for Semiconductors made of nanocrystals

    Researchers at ETH have provided the first theoretical explanation for how electrical current is conducted in semiconductors made of nanocrystals. In the future, this could lead to the development of new sensors, lasers or LEDs for TV screens. A few years ago, we were introduced to TV scree ... more

    Growing polymers with different lengths

    ETH researchers have developed a new method for producing polymers with different lengths. This paves the way for new classes of polymer materials to be used in previously inconceivable applications. It is hard to imagine everyday life without materials made of synthetic polymers. Clothes, ... more

    A material with a particular twist

    In a material made of two thin crystal layers that are slightly twisted with respect to each other, researchers at ETH have studied the behaviour of strongly interacting electrons. Doing so, they found a number of surprising properties. Many modern technologies are based on special material ... more

  • Videos

    Oxybromination of methane over vanadium phosphate

    ETH Zurich scientists have discovered a new catalyst that allows the easy conversion of natural gas constituents into precursors for the production of fuels or complex chemicals, such as polymers or pharmaceuticals. The new catalyst is extremely stable and results in fewer unwanted by-produ ... more

More about Empa
  • News

    Nanosafety research without animal experiments

    In order to reduce the number of animal experiments in research, alternative methods are being sought. This is a particular challenge if the safety of substances that have hardly been studied is to be ensured, for instance, the completely new class of nanomaterials. To accomplish just that, ... more

    The smallest motor in the world

    A research team from Empa and EPFL has developed a molecular motor which consists of only 16 atoms and rotates reliably in one direction. It could allow energy harvesting at the atomic level. The special feature of the motor is that it moves exactly at the boundary between classical motion ... more

    A recipe for eco-concrete

    Cement production has to drastically reduce its environmental footprint. Empa researchers are, therefore working on alternative cement recipes that cause significantly fewer emissions or can even bind the greenhouse gas carbon dioxide. It is the most widely used product in the world. Cement ... more

  • Videos

    A water-based, rechargeable battery

    First step to produce a cheap aquous electrolyte for powerful rechargeable batteries: Seven grams of sodium FSI (precise name: sodium bis(fluorosulfonyl)imide) and one gram of water produce a clear saline solution with an electrochemical stability of up to 2.6 volts – twice as much as other ... more