24-Mar-2021 - Technische Universität Wien

Moiré effect: How to twist material properties

2D materials have triggered a boom in materials research. Now it turns out that exciting effects occur when two such layered materials are stacked and slightly twisted

The discovery of the material graphene, which consists of only one layer of carbon atoms, was the starting signal for a global race: Today, so-called "2D materials" are produced, made of different types of atoms. Atomically thin layers that often have very special material properties not found in conventional, thicker materials.

Now another chapter is being added to this field of research: If two such 2D layers are stacked at the right angle, even more new possibilities arise. The way in which the atoms of the two layers interact creates intricate geometric patterns, and these patterns have a decisive impact on the material properties, as a research team from TU Wien and the University of Texas (Austin) has now been able to show. Phonons - the lattice vibrations of the atoms - are significantly influenced by the angle at which the two material layers are placed on top of each other. Thus, with tiny rotations of such a layer, one can significantly change the material properties.

The Moiré Effect

The basic idea can be tried out at home with two fly screen sheets - or with any other regular meshes that can be placed on top of each other: If both grids are perfectly congruent on top of each other, you can hardly tell from above whether it is one or two grids. The regularity of the structure has not changed.

But if you now turn one of the grids by a small angle, there are places where the gridpoints of the meshes roughly match, and other places where they do not. This way, interesting patterns emerge – that is the well-known moiré effect.

"You can do exactly the same thing with the atomic lattices of two material layers," says Dr. Lukas Linhart from the Institute for Theoretical Physics at TU Wien. The remarkable thing is that this can dramatically change certain material properties - for example, graphene becomes a superconductor if two layers of this material are combined in the right way.

"We studied layers of molybdenum disulphide, which, along with graphene, is probably one of the most important 2D materials," says Prof Florian Libisch, who led the project at TU Wien.  "If you put two layers of this material on top of each other, so-called Van der Waals forces occur between the atoms of these two layers. These are relatively weak forces, but they are strong enough to completely change the behaviour of the entire system."

In elaborate computer simulations, the research team analysed the quantum mechanical state of the new bilayer structure caused by these weak additional forces, and how this affects the vibrations of the atoms in the two layers.

The angle of rotation matters

"If you twist the two layers a little bit against each other, the Van der Waals forces cause the atoms of both layers to change their positions a little bit," says Dr Jiamin Quan, from UT Texas in Austin. He led the experiments in Texas, which confirmed the results of the calculations: The angle of rotation can be used to adjust which atomic vibrations are physically possible in the material.

"In terms of materials science, it is an important thing to have control over phonon vibrations in this way," says Lukas Linhart "The fact that electronic properties of a 2D material can be changed by joining two layers together was already known before. But the fact that the mechanical oscillations in the material can also be controlled by this now opens up new possibilities for us. Phonons and electromagnetic properties are closely related. Via the vibrations in the material, one can therefore intervene in important many-body effects in a controlling way." After this first description of the effect for phonons, the researchers are now trying to describe phonons and electrons combined, hoping to learn more about important phenomena like superconductivity.

The material-physical Moiré effect thus makes the already rich research field of 2D materials even richer - and increases the chances of continuing to find new layered materials with previously unattainable properties and enables the use of 2D materials as an experimental platform for quite fundamental properties of solids.

Facts, background information, dossiers
  • phonons
  • molybdenum disulfide
  • van der Waals forces
More about TU Wien
  • News

    A Sandblaster at the Atomic Level

    From semiconductors to moon rocks: Many materials are treated with ion beams. A research group at TU Wien has now been able to explain how this process depends on the roughness of the surface. If you want to remove a layer of paint from a metal surface, you can use a sandblaster: Countless ... more

    Anchoring single atoms

    There is a dictum to “never change a running system”. New methods can however be far superior to older ones. While to date chemical reactions are mainly accelerated by catalytic materials that comprise several hundreds of atoms, the use of single atoms could provide a new approach for catal ... more

    How ions get their electrons back

    Very unusual atomic states are produced at TU Wien: Ions are created by removing not just one but 20 to 40 electrons from each atom. These “highly charged ions” play an important role in current research. For a long time, people have been investigating what happens when such highly charged ... more

  • Videos

    Epoxy Resin

    A flash of ultraviolet light sets off a chain reaction which hardens the whole object. more

    Noreia

    The coating machine Noreia was built at TU Wien. This time-lapse video shows the construction process. more

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... more

More about University of Texas at Austin