20-May-2021 - Max-Planck-Institut für Kohlenforschung

Highly Accurate Results at Low Computational Cost

Researchers Succeed in Predicting NMR Parameters with DLPNO Approximation

Nuclear magnetic resonance (NMR) is one of the most important analytical techniques used in chemical, pharmaceutical, and biomedical research as well as in materials sciences. It provides detailed information about the structures of molecules in solution, which is, however, indirect. Hence, researchers often have to rely on tools from theoretical chemistry in order to properly interpret the complex experimental data. One of the primary sources of information in NMR spectra is the so-called “chemical shift” that exists for each atom in a molecule and depends on its surroundings. Quantum chemists simulate the chemical shift for each atom, in order to receive the full information content of NMR spectra. However, the methods used so far repeatedly reached their limits.

Previous results were often too inaccurate or needed high computational effort - the new DLPNO approximation significantly reduces the computational effort of exact methods

The combination of experiment and new theoretical methods leads to insights that would not have been accessible by other means. However, scientists often face a dilemma: efficient methods such as density functional theory - the workhorse of theoretical chemistry – regularly provide insufficient accuracy. High-accuracy wavefunction methods, in turn, require far more computational resources and their scope is restricted to molecules with only a few atoms – far too small for successful applications in pharmacy or biomedical research.

Researchers from the Department of Molecular Theory and Spectroscopy at the MPI für Kohlenforschung have now developed a new approach that brings a breakthrough. Their wave function method is based on the so-called domain based local pair natural orbital (DLPNO) framework, a concept developed by Frank Neese. In a recently published article, Stoychev et al. report how they succeeded in accurately calculating chemical shifts for systems with hundreds of atoms. Their new method saves computational time and opens up interesting perspectives for users, because in many areas of chemistry, the interpretation of NMR spectra is part of daily business.

More about MPI für Kohlenforschung
  • News

    Nitrous oxide - anything but inert

    The emission of various greenhouse gases threatens the global environment, and scientists around the world are increasingly involved and committed to address this issue. While many research groups focus on carbon dioxide (C02) or methane (CH4) revalorization strategies, a team led by Dr. Jo ... more

    New organocatalysts can compete with enzymes

    Organocatalysis not only provides an imaginable alternative to classical catalytic processes, but is even more efficient in many cases - and thus of particular interest to the chemical and pharmaceutical industries. More than 20 years ago, Ben List and his Scottish colleague David MacMillan ... more

    Homogeneous hydrogenolysis reaction with molecular palladium catalyst

    Tritium 3H, a radioactive isotope of hydrogen, is commonly used in medicinal chemistry as a label to follow the course of a drug in the human body. Chemists like to use the technique to evaluate drug candidates and their metabolism. However, synthesis of the radiolabeled molecules is challe ... more

More about Max-Planck-Gesellschaft
  • News

    Chemical triad forms seeds for clouds

    Atmospheric aerosol particles are needed as seeds to form clouds, but the controlling processes are not fully understood. By combining experiments in the CERN cloud cham-ber and computer modelling, a team of international researchers, including scientists from the Max Planck Institute for C ... more

    A new method for exploring the nano-world

    Scientists at the Max Planck Institute for the Science of Light (MPL) and Max-Planck-Zentrum für Physik und Medizin (MPZPM) in Erlangen present a large step forward in the characterization of nanoparticles. They used a special microscopy method based on interfereometry to outperform existin ... more

    Nitrous oxide - anything but inert

    The emission of various greenhouse gases threatens the global environment, and scientists around the world are increasingly involved and committed to address this issue. While many research groups focus on carbon dioxide (C02) or methane (CH4) revalorization strategies, a team led by Dr. Jo ... more