01-Jun-2021 - Max-Planck-Institut für Kohlenforschung

Researchers reveal another secret of photosynthesis

Chemical isomerism in Nature’s water splitting catalyst may explain the high efficiency of the photosynthetic reaction

Green hydrogen is often said to be “the petroleum of tomorrow”. For a climate-neutral energy supply in the future, we must turn away from carbon-based sources and harness solar fuels. The road ahead is long and requires, among other things, a precise knowledge of the functional principles of biological photosynthesis, because it acts as a blueprint for chemical processes. The Pantazis group at the Max-Planck-Institut für Kohlenforschung in Mülheim is making seminal contributions to this goal with its studies on water oxidation. The team is researching the structure and mode of action of the biological catalyst that performs water splitting in plants. The researchers have now discovered an unexpected isomerism in the water splitting catalyst, which redefines the understanding of biological water oxidation.

Isomers in the tetramanganese-calcium cluster drive the reaction in parallel steps

Their report, now published in the journal Angewandte Chemie, focuses on a type of isomerism in Nature’s catalyst that was never observed before. Specifically, using advanced quantum chemistry in combination with electron paramagnetic resonance spectroscopy (EPR), the team discovered that the catalyst does not have a single, unique structure in its "resting" state (the "S1" state), but exists in two isomeric forms. The researchers refer to these structures as "orientational Jahn-Teller isomers". They describe that one of the four manganese ions can be distorted (elongated) in two different directions, and that both directions lead to stable forms of the catalyst that exist simultaneously.

This fact means that depending on the direction of the deformation, advancement to the next step of the catalytic cycle can occur by oxidation of different metal ions, which in turn creates two new forms of the catalyst with different distribution of electrons. As a result, the researchers conclude that the catalytic cycle of natural water oxidation is not a simple sequence of intermediates, but that it is a “double” or “two-stranded” cycle from the beginning, with isomeric components advancing in parallel. "Each intermediate step has two forms, one major and one minor, of which only the minor form may be active. This probably helps the enzyme to avoid unwanted side reactions and to achieve its extremely high selectivity," explains the head of the group, Dr. Dimitrios Pantazis. While it is not yet clear how nature evolved this remarkable mechanistic feature, the discovery by the Mülheim researchers unravels a major mystery of photosynthesis and gives synthetic chemists fresh ideas about stereoelectronic control in catalytic water splitting.

Facts, background information, dossiers
  • photosynthesis
  • isomers
  • EPR spectroscopy
More about MPI für Kohlenforschung
  • News

    Highly Accurate Results at Low Computational Cost

    Nuclear magnetic resonance (NMR) is one of the most important analytical techniques used in chemical, pharmaceutical, and biomedical research as well as in materials sciences. It provides detailed information about the structures of molecules in solution, which is, however, indirect. Hence, ... more

    Discovery of New Solid Catalysts for Water Electrolysis

    Green hydrogen - produced from water electrolysis by using sustainable electricity - is getting more attention due to its potential to be used as energy carrier as well as building block for various industrial processes. Among both half-reactions of water electrolysis, Oxygen Evolution Reac ... more

    New class of stable nickel complexes developed

    The use of nickel as a catalyst for the formation of chemical bonds is of great importance to the chemical industry - applications range from the production of fine chemicals to the synthesis of pharmaceuticals, insecticides and pesticides. For the production of nickel complexes, industry h ... more

More about Max-Planck-Gesellschaft
  • News

    How ethane-consuming archaea pick up their favorite dish

    Hot vents in the deep sea are home to microbes that feed on ethane. They were discovered recently from scientists of the Max Planck Institute for Marine Microbiology. Now the researchers from Bremen succeeded in finding an important component in the microbial conversion of the gas. They wer ... more

    Enantiomorph distribution maps for metals and metallic alloys

    The spatially resolved determination of which of the two enantiomorphic structural variants - the left-handed or the right-handed - of a chiral phase is present in a polycrystalline material is the focus of a publication in Science Advances. With the EBSD (electron backscatter diffraction) ... more

    Nanomaterials with laser printing

    In the journal Nature Communications, an interdisciplinary team from the Max Planck Institute of Colloids and Interfaces presents for the first time a laser-driven technology that enables them to create nanoparticles such as copper, cobalt and nickel oxides. At the usual printing speed, pho ... more