Just Mix It Up
New Synthetic Method for Making Amphiphilic Molecules without Additives
Amphiphilic molecules, which aggregate and encapsulate molecules in water, find use in several fields of chemistry. The simple, additive-free connection of hydrophilic and hydrophobic molecules would be an efficient method for amphiphilic molecule synthesis. However, such connections, or bonds, are often fragile in water. Now, scientists at Tokyo Institute of Technology have developed an easy way to prepare water-stable amphiphiles by simple mixing. Their new catalyst- and reagent-free method will help create further functional materials.

Dr. Masahiro Yamashina
Soaps and detergents are used to clean things like clothes and dishes. But how do they actually work? It turns out that they are made of long molecules containing a “hydrophilic” or water-loving part and a “hydrophobic” or water-hating part. When added to water, these molecules self-assemble to form giant, spherical “supramolecules” called micelles that get the cleaning up done by using the hydrophobic part to trap the grease.
Known as “amphiphiles” to chemists, these molecules have garnered much attention due to their utility in developing supramolecular materials. The synthesis of amphiphiles usually requires several reactions and purifications. In contrast, if hydrophilic and hydrophobic molecules could be simply connected without chemicals, it would be a very powerful synthetic method. In fact, some reactions that do not require any catalysts or reagents are known today. However, they have a fatal flaw: their chemical bonds are unstable in water, the very medium necessary for micelle formation!
Addressing this issue in a recent study published in Angewandte Chemie, scientists at Tokyo Institute of Technology (Tokyo Tech), Japan, led by Dr. Masahiro Yamashina and Prof. Shinji Toyota, have now come up with a solution using a chemical reaction known as the “Staudinger reaction”, in which an azide (hydrophilic part) and a phosphine (hydrophobic part) combine to form an “azaylide”.
“Although a typical Staudinger reaction proceeds rapidly and quantitatively at room temperature, the formed azaylide readily hydrolyses into a primary amine and phosphine oxide in water. In contrast, a ‘non-hydrolysis’ version of this reaction was recently found, in which a halogen atom, such as chlorine, added to an azide compound significantly improves the hydrostability of azaylide,” explains Yamashina.
Accordingly, the team of scientists prepared a chlorinated azide subcomponent and mixed it with tris(p-tolyl)phosphine (PTol3), triphenylphosphine (PPh3), and tris(p-anisyl)phosphine (PAni3) to obtain the azaylide-based amphiphiles NPTol3, NPPh3, and NPAni3, respectively. They then dissolved the amphiphiles in water to observe their self-assembling behavior and found spontaneous aggregation in each case. Further measurements revealed that the aggregates were in the shape of spheres roughly 2 nm in size.
The team also prepared the corresponding non-chlorinated azaylide-based amphiphiles—nNPTol3, nNPPh3, and nNPAni3—and investigated the water stability of both the chlorinated and non-chlorinated azaylides. The non-chlorinated azaylides quickly disintegrated in water while their chlorinated counterparts remained stable. While the difference was clearly due to the presence of the chlorine atom, the underlying mechanism was unclear. To figure this out, the scientists performed density functional theory calculations that helped them understand the structures of the azaylides.
Finally, when tested with hydrophobic organic dyes like Nile Red and BODIPY, the team saw that the dye molecules became encapsulated by the spherical azaylide aggregates, exhibiting desirable amphiphile behavior. “The azaylide formation presented in our study serves as a viable technique for on-site preparation of water-stable amphiphiles without catalysts and reagent, which can help create more such functional materials in future,” comments an excited Yamashina.
The team’s discovery will certainly help usher in significant advancements in the development of highly versatile functional materials, even in aqueous media.
Original publication
Other news from the department science

Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
Last viewed contents

Chemists develope a new method for the formation of fluorinated molecular rings - Sought-after compounds readily accessible for the first time
Thermo Fisher Scientific Introduces New Solvent Recycling System - Thermo Scientific SRS Pro Reduces Mobile Phase Consumption by up to 90%
Size matters in the giant magnetoresistance effect in semiconductors

Metal-organic frameworks can separate gases despite the presence of water

Choosing the right partner: Synthesis of a rare metal complex of nitrous oxide opens new vistas for the degradation of a potent greenhouse gas
Karl_Gottfried_Hagen
