21-Apr-2022 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Light amplification accelerates chemical reactions in aerosols

Temporal sequence of photochemical reaction in individual aerosol particles observed with high resolution

Aerosols in the atmosphere react to incident sunlight. This light is amplified in the interior of the aerosol droplets and particles, accelerating reactions. ETH researchers have now been able to demonstrate and quantify this effect and recommend factoring it into future climate models.

Liquid droplets and very fine particles can trap light – similar to how light can be caught between two mirrors. As a result, the intensity of the light inside them is amplified. This also happens in very fine water droplets and solid particles in our atmosphere, i.e. aerosols. Using modern X-​ray microscopy, chemists at ETH Zurich and the Paul Scherrer Institute (PSI) have now investigated how light amplification affects photochemical processes that take place in the aerosols. They were able to demonstrate that light amplification causes these chemical processes to be two to three times faster on average than they would be without this effect.

Using the Swiss Light Source at the PSI, the researchers studied aerosols consisting of tiny particles of iron(III) citrate. Exposure to light reduces this compound to iron(II) citrate. X-​ray microscopy makes it possible to distinguish areas within the aerosol particles composed of iron(III) citrate from those made up of iron(II) citrate down to a precision of 25 nanometres. In this way, the scientists were able to observe and map in high resolution the temporal sequence of this photochemical reaction in individual aerosol particles.

Decay upon exposure to light

“For us, iron(III) citrate was a representative compound that was easy to study with our method,” says Pablo Corral Arroyo, a postdoc in the group headed by ETH Professor Ruth Signorell and a lead author of the study. Iron(III) citrate stands in for a whole range of other chemical compounds that can occur in the aerosols of the atmosphere. Many organic and inorganic compounds are light-​sensitive, and when exposed to light, they can break down into smaller molecules, which can be gaseous and therefore escape. “The aerosol particles lose mass in this way, changing their properties,” Signorell explains. Among other things, they scatter sunlight differently, which affects weather and climate phenomena. In addition, their characteristics as condensation nuclei in cloud formation change.

As such, the results also have an effect on climate research. “Current computer models of global atmospheric chemistry don’t yet take this light amplification effect into account,” ETH Professor Signorell says. The researchers suggest incorporating the effect into these models in future.

Non-​uniform reaction times in the particles

Now precisely mapped and quantified, the light amplification in the particles comes about through resonance effects. The light intensity is greatest on the side of the particle opposite the one the light is shining on. “In this hotspot, photochemical reactions are up to ten times faster than they would be without the resonance effect,” says Corral Arroyo. Averaged over the entire particle, this gives an acceleration by the above-​mentioned factor of two to three. Photochemical reactions in the atmosphere usually last several hours or even days.

Using the data from their experiment, the researchers were able to create a computer model to estimate the effect on a range of other photochemical reactions of typical aerosols in the atmosphere. It turned out that the effect does not pertain just to iron(III) citrate particles, but all aerosols – particles or droplets – made of compounds that can react with light. And these reactions are also two to three times faster on average.

Facts, background information, dossiers
  • X-ray microscopy
  • aerosol particles
  • climate research
More about ETH Zürich
  • News

    Microcavities as a sensor platform

    Sensors are a pillar of the Internet of Things, providing the data to control all sorts of objects. Here, precision is essential, and this is where quantum technologies could make a difference. Researchers in Innsbruck and Zurich are now demonstrating how nanoparticles in tiny optical reson ... more

    A look into the magnetic future

    This view into processes that take place within so-​called artificial spin ice could play an important role in the development of novel high-​performance computers. When water freezes to form ice, the water molecules, with their hydrogen and oxygen atoms, arrange themselves in a complex str ... more

    Breaking down plastic into its constituent parts

    A team of ETH researchers led by Athina Anastasaki have succeeded in breaking down plastic into its molecular building blocks and in recovering over 90 percent of them. A first step towards genuine plastic recycling. The chemical industry has a long tradition of producing polymers. This inv ... more

  • Videos

    Oxybromination of methane over vanadium phosphate

    ETH Zurich scientists have discovered a new catalyst that allows the easy conversion of natural gas constituents into precursors for the production of fuels or complex chemicals, such as polymers or pharmaceuticals. The new catalyst is extremely stable and results in fewer unwanted by-produ ... more

More about Paul Scherrer Institut
  • News

    A look into the magnetic future

    This view into processes that take place within so-​called artificial spin ice could play an important role in the development of novel high-​performance computers. When water freezes to form ice, the water molecules, with their hydrogen and oxygen atoms, arrange themselves in a complex str ... more

    Novel X-ray lens facilitates glimpse into the nanoworld

    PSI scientists have developed a ground-breaking achromatic lens for X-rays. This allows the X-ray beams to be accurately focused on a single point even if they have different wavelengths. The new lens will make it much easier to study nanostructures using X-rays, according to a paper just p ... more

    Electron conspiracy in a Japanese lattice pattern: kagome metals baffle science

    In the past four years scientists have discovered metals whose crystal structure mimics that of a traditional Japanese woven bamboo pattern: kagome metals. The international research activity in this new direction of quantum materials has recently reached a new climax: an international team ... more