Atomic Terahertz-vibrations solve the enigma of ultrashort soliton molecules
Findings may help to develop particularly fast chemically sensitive microscopes that can be used to identify materials
(c) Georg Herink
In ultrashort-pulse lasers, optical solitons can form particularly tight spatial and temporal bonds. These are also called ultrashort "soliton molecules" because they are stably coupled to each other, similar to the chemically bonded atoms of a molecule. The research group in Bayreuth used a widely used solid-state laser made of a sapphire crystal doped with titanium atoms to find out how this coupling occurs. First, a single leading flash of light stimulates the atoms in the sapphire's crystal lattice to instantly vibrate. These characteristic motion oscillates in the terahertz range and decays again within a few picoseconds (a picosecond corresponds to a trillionth of a second). In this extremely short time span, the refractive index of the crystal changes. When a second flash of light immediately follows and catches up with the first, it senses this change: it is not only slightly affected by the atomic vibrations, but can also stably be bound to the preceding soliton. A "soliton molecule" is born.
"The mechanism we discovered is based on the physical effects of Raman scattering and self-focusing. It explains a variety of phenomena that have puzzled science since the invention of titanium-sapphire lasers over 30 years ago. What is particularly exciting about the discovery is that we can now exploit the dynamics of solitons during their generation in the laser cavity to scan atomic bonds in materials extremely rapidly. The entire measurement of a so-called intracavity Raman spectrum now takes less than a thousandth of a second. These findings may help to develop particularly fast chemically sensitive microscopes that can be used to identify materials. In addition, the coupling mechanism opens up new strategies to control light pulses by atomic motions and, conversely, to generate unique material states by light pulses," explains junior professor Dr. Georg Herink, head of the study and junior professor of ultrafast dynamics at the University of Bayreuth.
In parallel with the analysis of experimental data, the researchers have succeeded in developing a theoretical model for soliton dynamics. The model allows to explain the observations obtained in experiments and to predict novel effects of atomic vibrations on the dynamics of solitons. The interactions of solitons in optical systems and their applications for high-speed spectroscopy are currently being investigated in the DFG research project FINTEC at the University of Bayreuth.
Original publication
Other news from the department science
These products might interest you
DM8000 M & DM12000 M by Leica
See More, Detect Faster
High-throughput Inspection Systems
LUMOS II by Bruker
FT-IR microscopy in the fast lane - the LUMOS II
One infrared microscope for all
alpha300 R by WITec
3D Raman microscopes with unequalled speed, sensitivity and resolution
Visualize and characterize every chemical detail
inVia Qontor by Renishaw
Raman Microspectroscopy with Automatic Focus Tracking to Save You Time and Effort
A confocal Raman microscope suitable for samples with uneven, curved or rough surfaces
ZEISS ZEN core by Carl Zeiss
ZEISS ZEN core - Your Software suite for connected microscopy in laboratory and production
The comprehensive solution for imaging, segmentation, data storage and analysis
HYPERION II by Bruker
FT-IR and IR laser imaging (QCL) microscope for research and development
Analyze macroscopic samples with microscopic resolution (5 µm) in seconds
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.