22-Jun-2010 - Royal Society of Chemistry (RSC)

Ironing out materials for gas storage and separations

An iron-based porous solid that can store hydrogen and capture carbon dioxide, potentially leading to greener energy and cleaner air, has been made by US scientists.

Jeffrey Long, at the University of California, Berkeley, and colleagues made a metal-organic framework (MOF) with accessible Fe2+ sites on its surface. Although similar structures using manganese and copper cations were made by the team, they found that the iron ions were better at binding hydrogen. At room temperature, the iron-based MOF bound hydrogen more strongly than most other reported MOFs, moving hydrogen storage research a step closer to US Department of Energy targets for hydrogen fuel cell-powered cars. The MOF is also good at binding carbon dioxide, reports Long, making it of interest for capturing the greenhouse gas from power station waste. Long developed a high-throughput method for making the MOF, which made it easy to investigate a variety of reaction conditions.

Porous solids known as MOFs can have extremely high internal surface areas, making them of interest for use in mobile hydrogen storage systems. However, at room temperature, MOFs are not good at storing hydrogen because the interactions between the gas and the MOF surface are weak. One way to improve their performance is to generate exposed metal cation sites on the framework surface, which provide strong adsorption sites for hydrogen.

“Our research lays out a strategy for using automated instrumentation for the rapid, parallel synthesis of new materials for hydrogen storage and carbon dioxide capture,” says Long. “We are now working to couple this technology with high-throughput screening instrumentation that will enable us to further speed the pace of discovery of these desperately needed materials.”

Original publication: Kenji Sumida, Satoshi Horike, Steven S. Kaye, Zoey R. Herm, Wendy L. Queen, Craig M. Brown, Fernande Grandjean, Gary J. Long, Anne Dailly and Jeffrey R. Long; Chem. Sci. 2010.

More about Royal Society of Chemistry
  • News

    New coating is self-defence for seeds

    Scientists in Switzerland have developed a protective coating for seeds that poisons pests with cyanide when they bite into it. The coating is a system of two layers and only becomes toxic when the layers are mixed, eliminating the problem of environmental contamination that is associated w ... more

    Using bacteria to make electrodes

    Scientists in France have produced hematite using a bacterial pathway for use as an electrode material in Li-ion technologies. Currently, most commercial electrode materials for Li-ion technologies are prepared using the ceramic method, which requires long heating periods at high temperatur ... more

    Marine plant replacement for platinum in solar cells

    An international research team has shown that that the power conversion efficiency of sea tangle extract is comparable to platinum in solar cell electrodes. Dye-sensitized solar cells (DSCs) are quickly becoming a widespread and affordable alternative to photovoltaic solar cells. The electr ... more

  • Videos

    Royal Society of Chemistry – About us

    With more than 51,000 members and an international publishing and knowledge business we are the UK’s professional body for chemical scientists, supporting and representing our members and bringing together chemical scientists from all over the world. more

    A career in toxicology

    Hear from RSC member Vicki Stone talk about her role as a Nanotoxicologist. more

    When Food met Pharma: Delivery Strategies for Nutraceuticals

    With growing prevalence of lifestyle-associated diseases, including obesity, Type II diabetes and cardiovascular disease, there is an urgent need and demand to try to prevent the onset of these diseases within our growing population. Nutraceuticals, along with appropriate diet and exercise, ... more

  • Companies

    Royal Society of Chemistry (RSC)

    The RSC is a leading international publisher of highly regarded journals and books in the chemical sciences. The RSC is also the professional body for chemists with a global membership of over 46,000. more

More about UC Berkeley