20-Feb-2012 - Empa (Eidgenössische Materialprüfungs- und Forschungsanstalt)

Ordered two-dimensional polymers created for the first time

Swiss scientists have created a minor sensation in synthetic chemistry. The team of scientists from ETH Zurich and Empa, the Swiss Federal Laboratories for Materials Science and Technology, succeeded for the first time in producing regularly ordered planar polymers that form a kind of «molecular carpet» on a nanometer scale.

Back in 1920 at ETH Zurich, the chemist Hermann Staudinger postulated the existence of macromolecules consisting of many identical modules strung together like a chain. His concept was initially greeted with mockery and incomprehension from his fellow chemists. But Staudinger was to be proved right (and eventually even awarded the Nobel Prize in Chemistry in 1953): today the macromolecules described as polymers are known as plastics, and by 1950 one kilogram of them was already being produced per capita worldwide. Today, more than ninety years after Staudinger’s discovery about 150 million tons of plastics are manufactured every year – a gigantic industry delivering products that our daily lives can hardly do without. A research group led by ETH Zurich scientists A. Dieter Schlüter and Junji Sakamoto has now succeeded in making a decisive breakthrough in the synthetic chemistry of polymers: they have for the first time created two-dimensional polymers.

Polymers are formed when small single molecules known as monomers join together by chemical reactions like the links of a chain to form high molecular weight substances. The question remained as to whether polymers can only polymerize linearly, i.e. in one dimension. Although graphene counts as a naturally occurring representative of a two-dimensional polymer – planar layers of carbon with a honeycomb-like pattern – it cannot be synthesized in a controlled way. In order to develop a synthetic chemistry that generates two-dimensional molecules the ETH chemists had to first and foremost create oligofunctional monomers in such a way that they join together purely two-dimensionally instead of linearly or even three-dimensionally. Polymers of this kind must have three or more covalent bonds between the regularly repeating units. The scientists had to find out which bonding chemistry and environment was most suitable for producing this kind of «molecular carpet».

Light plus special building blocks equal a «molecular carpet»

They decided to do the synthesis in a single crystal, i.e. a crystal with a homogeneous layer lattice. PhD student Patrick Kissel successfully used this to crystallize special monomers in layered hexagonal single crystals. The monomers he generated are photochemically sensitive molecules, for which such an arrangement is energetically optimum. When irradiated with light with a wavelength of 470 nanometers, the monomers polymerized in all the layers of the crystal. To separate the individual layers from one another the researchers boiled the crystal in a suitable solvent. Each layer represents a two-dimensional polymer.

The fact that the team really had succeeded in producing sheet-like polymers with regular structures was shown by special studies in a transmission electron microscope (TEM) carried out by Empa researcher Rolf Erni and Marta Rossell from ETH Zurich (who meanwhile is also working at Empa’s Electron Microscopy Center). «These two-dimensional polymers are extremely sensitive towards irradiation. It’s really tricky to not destroy their structure during the TEM measurements, which made the analyses a real tough nut to crack», says Erni. Diffraction experiments at minus 196oC – the condensation point of nitrogen – and high-resolution images at a low electron dose allowed the Empa scientists to eventually provide proof that the cross-linked molecules indeed exhibit a regular two-dimensional structure.

Potential application: a molecular sieve

The polymerization method that was developed is so gentle that all the monomer’s functional groups are also preserved at defined positions in the polymer. Says Sakamoto, «Our synthetically manufactured polymers are not conductive like graphene, but on the other hand we would be able to use them for example to filter the tiniest molecules.» In fact in the regularly arranged polymers there are small defined holes with a diameter in the sub-nanometer range. Moreover, tiny hexagons in the polymers, formed by benzene rings with three ester groups, can be removed by a simple hydrolytic process. This would form a «sieve» with an ordered structure suitable for the selective filtration of molecules.

However, before the researchers can think about practical applications, the task now is to characterize the material’s properties. First of all they must find a way to produce larger amounts and even larger sheet sizes. The size of the crystals is currently only 50 micrometers. Sakamoto stresses that «those, however, are already enormous degrees of polymerization at a molecular level.»

Facts, background information, dossiers
More about Empa
  • News

    Seeing the world through different eyes

    Short-wave infrared light (SWIR) is useful for many things: It helps sort out damaged fruit and inspecting silicon chips, and it enables night vision devices with sharp images. But SWIR cameras have so far been based on expensive electronics. Researchers at Empa, EPFL, ETH Zurich and the Un ... more

    Exotic magnetic states in miniature dimensions

    Led by scientists at Empa and the International Iberian Nanotechnology Laboratory, an international team of researchers from Switzerland, Portugal, Germany, and Spain have succeeded in building carbon-based quantum spin chains, where they captured the emergence of one of the cornerstone mod ... more

    Fireproof and comfortable

    State-of-the-art flame retardant cotton textiles suffer from release of formaldehyde and are uncomfortable to wear. Empa scientists managed to circumvent this problem by creating a physically and chemically independent network of flame retardants inside the fibers. This approach retains the ... more

  • Videos

    A water-based, rechargeable battery

    First step to produce a cheap aquous electrolyte for powerful rechargeable batteries: Seven grams of sodium FSI (precise name: sodium bis(fluorosulfonyl)imide) and one gram of water produce a clear saline solution with an electrochemical stability of up to 2.6 volts – twice as much as other ... more

More about ETH Zürich
  • News

    Growing carbon footprint of plastics

    After analysing the global plastics value chain, ETH researchers have revealed that the impact of plastics on climate and health is bigger than originally thought due to the increased use of coal for process heat, electricity and as a raw material in production. Global demand for them has q ... more

    New photocatalyst made from an aerogel for more efficient hydrogen production

    Researchers at ETH Zurich have developed a new photocatalyst made from an aerogel that could enable more efficient hydrogen production. The key is sophisticated pretreatment of the material. Aerogels are extraordinary materials that have set Guinness World Records more than a dozen times, i ... more

    A new boost for the data highway

    Increasingly large amounts of data are being sent back and forth around the world. To ensure that this exchange continues to function smoothly, new solutions are needed at the interfaces between chips and optical fibres. The ETH Zurich spin-​off Lumiphase relies on a new material that effic ... more

  • Videos

    Oxybromination of methane over vanadium phosphate

    ETH Zurich scientists have discovered a new catalyst that allows the easy conversion of natural gas constituents into precursors for the production of fuels or complex chemicals, such as polymers or pharmaceuticals. The new catalyst is extremely stable and results in fewer unwanted by-produ ... more