My watch list
my.chemeurope.com  
Login  

Purifying dairy wastewater – at the same time producing electricity

30-May-2013

In an EU-funded project the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart is developing, together with industrial and scientific partners, a modular system to purify dairy wastewater electrochemically. Using an integrated fuel cell, the generated hydrogen will be recovered to supply power to the system.

The wastewater discharged from the production of dairy products such as cheese, quark and yoghurt typically contain lactose, proteins and milk fats as well as surfactants and disinfectants from cleaning the production plants. Cheese production also results in whey, a watery solution, which besides milk proteins contains mainly lactose. The disposal of this wastewater is very cost-intensive due to the high chemical and biological oxygen demand. Large dairies typically treat their wastewater in large-scale biological wastewater treatment plants. However for many, especially small and medium-sized enterprises, the investments in such solutions are prohibitively expensive.

In the EU-funded project REWAGEN a project consortium with business and research partners – led by the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart – is therefore developing a multistage process for the efficient electrochemical treatment of dairy effluents and whey. The modular design will make it possible to adapt the system flexibly to the varying amount of wastewater at smaller dairies. “Here, the various steps in the process are combined and integrated into a compact system. The aim is that each step in the process should provide a substance flow that can be further processed or fed back into the system,” explains Alexander Karos, Project Manager at the Fraunhofer IGB. The purified water can be re-used directly, for example to clean the plants.

The hydrogen generated as a by-product from the electrolysis of the water will also be used – to supply the plant with electricity. “We want to separate and purify the hydrogen so that we can use it in a fuel cell to supply power to the system,” says Karos, describing the new approach.

“To purify the wastewater we favour electrochemical processes because, in this way, we can prevent the addition of chemicals and the related increased salinity of the water,” Karos points out. To achieve this the researchers aim to combine four different electrochemical processes. In a first step oils and fats will be separated using the process of pulsed electrocoalescence: Dispersed droplets of oil move around in the alternating electric field due to their surface charge and merge to form larger drops of oil that can be separated mechanically. Particulate impurities are separated in the subsequent step by means of electroflocculation. “Here we make use of iron electrodes that release iron ions into the water and react there forming iron hydroxide floccules. With these floccules we capture and precipitate organic solids,” Karos adds. In a third electrochemical cell, dissolved organic components are degraded by electrooxidative processes, for example by means of a diamond electrode. And finally in a fourth stage with capacitive deionization, dissolved salts are removed by concentrating them by a correspondingly charged electrode and precipitating them.

Facts, background information, dossiers
  • lactose
  • deionization
  • biological wastewat…
  • disinfectants
  • Fraunhofer
  • water
  • Fraunhofer-Institut…
More about Fraunhofer-Institut IGB
  • News

    Polyamides from terpenes

    The Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB has developed a sustainable alternative to petrochemically produced plastics using terpenes found in resin-rich wood. The natural substances are available from conifers such as pine, larch or spruce. In the productio ... more

    Chemicals from carbon dioxide – with plasma and perovskite membranes

    Researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB and the University of Stuttgart aim to use the climate-damaging greenhouse gas carbon dioxide as a raw material for the production of chemicals. To do this, they are developing a combined plasma and me ... more

    Nouryon announces 2019 Imagine Chemistry finalists

    Nouryon (formerly AkzoNobel Specialty Chemicals) has announced the 13 finalists for the 2019 edition of its Imagine Chemistry collaborative innovation challenge. Imagine Chemistry was launched to tackle chemistry-related challenges and uncover new ways to create value for customers. The 201 ... more

More about Fraunhofer-Gesellschaft
  • News

    3D-printed optics for individualized mass production

    Individually manufactured and still suitable for mass production? Within the framework of the Fraunhofer "Go Beyond 4.0" project, this apparent contradiction is to be eliminated. In the field of illumination optics, the two Fraunhofer Institutes for Silicate Research ISC and for Optics and ... more

    Ceramic technologies for highly efficient power-to-X processes

    The speedy reduction of worldwide CO2 emissions is one of the most pressing and challenging tasks of our time. Alongside the strategy of avoiding CO2 emissions altogether, there are a number of technologies which transform unavoidable CO2 into valuable products. But these so-called power-to ... more

    Polyamides from terpenes

    The Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB has developed a sustainable alternative to petrochemically produced plastics using terpenes found in resin-rich wood. The natural substances are available from conifers such as pine, larch or spruce. In the productio ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE