Unique chemistry in hydrogen catalysts
A study published in the journal Science describes a key step in assembling the hydrogen-generating catalyst.
"It's pretty interesting that bacteria can do this," said David Britt, professor of chemistry at UC Davis and co-author on the paper. "We want to know how nature builds these catalysts — from a chemist's perspective, these are really strange things."
The bacterial catalysts are based on precisely organized clusters of iron and sulfur atoms, with side groups of cyanide and carbon monoxide. Those molecules are highly toxic unless properly controlled, Britt noted.
The cyanide and carbon monoxide groups were known to come from the amino acid tyrosine, Britt said. Jon Kuchenreuther, a postdoctoral researcher in Britt's laboratory, used a technique called electron paramagnetic resonance to study the structure of the intermediate steps.
They found a series of chemical reactions involving a type of highly reactive enzyme called a radical SAM enzyme. The tyrosine is attached to a cluster of four iron atoms and four sulfur atoms, then cut loose leaving the cyanide and carbon monoxide groups behind.
"People think of radicals as dangerous, but this enzyme directs the radical chemistry, along with the production of normally poisonous CO and CN, along safe and productive pathways," Britt said.
Kuchenreuther, Britt and colleagues also used another technique, Fourier Transform Infrared to study how the iron-cyanide-carbon monoxide complex is formed. That work will be published separately.
"Together, these results show how to make this interesting two-cluster enzyme," Britt said. "This is unique, new chemistry."
Most read news
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.