27-Jan-2014 - Scuola Internazionale Superiore di Studi Avanzati (SISSA)

Molecules as circuits

The Kondo effect can improve a molecule's conductivity

Silicon-based electronics has certain limits, in the physical sense of the word: this type of circuit can never become "nano" because of the physical laws governing the flow of electrons. This imposes a halt to the process of miniaturization of electronic devices. One of the possible solutions is to use molecules as circuits, but their poor conduction capabilities make them unlikely candidates. There is, however, a possible way around this, which was investigated in a recent paper published in Proceedings of the National Academy of Sciences (PNAS) by an international research team that includes Ryan Requist, Erio Tosatti and Michele Fabrizio of the International School for Advanced Studies (SISSA) in Trieste.

The Kondo effect, first described last century by the Japanese physicist Jun Kondo, is observed when magnetic impurities, i.e., very few atoms (even only 1 in 1000) of magnetic material such as iron are added to metals like gold or copper. Even molecules like nitric oxide behave like magnetic impurities: when located between metal electrodes they give rise to a Kondo effect. This effect, as the study authors show, could be exploited to change the conductance between the two electrodes. Requist and Tosatti created a computer model of the Kondo effect under these conditions and formulated predictions on the behaviour of the molecules. These were then tested in experiments carried out by the experimental physicists involved in the study.

The results are encouraging: "Our work demonstrates for the first time that we can predict the Kondo effect quantitatively and it offers a theoretical basis for similar calculations with larger and more complex molecules. In the future it might be helpful when searching for the most appropriate molecules for these purposes", commented Requist.

More in detail…

The Kondo effect occurs when the presence of a magnetic atom (an impurity) causes the movement of electrons in a material to behave in a peculiar way.

"Every electron has a mechanical or magnetic rotation moment, termed spin", explains Erio Tosatti. "Kondo is a phenomenon related to the spin of metal electrons when they encounter a magnetic impurity. The free metal electrons cluster around the impurity and "screen it out" so that it can no longer be detected, at least so long as the temperature is sufficiently low". This results in specific properties of the material, for example an increase in electrical resistance. "Conversely, in conditions involving very small size scales (the tip of a tunnelling electron microscope) such as those used in this study, the result is instead an increase in conductivity", explains Requist.

Facts, background information, dossiers
More about SISSA
  • News

    Theoretical physicists unveil one of the most ubiquitous and elusive concepts in chemistry

    Even if we study them at school, oxidation numbers have so far eluded any rigorous quantum mechanical definition. A new SISSA study, published in Nature Physics, reverses this state of affairs by providing such a definition, based on the theory of topological quantum numbers, which was hono ... more

    How to separate nanoparticles by “shape”

    In our daily lives, the purpose and function of an item is defined by either its material, e.g. a rain jacket is fabricated of water-proof material, or its shape, e.g. a wheel is round to enable a rolling motion. What is the impact of the two factors on the nanoscale?  The impact of materia ... more

    A periodic table of molecular knots

    Consider a short piece of rope: could you guess which knots are more likely to form if you crumple and shake it? Synthetic chemists have long been working on a molecular version of this problem and, so far, have succeeded at synthesizing half a dozen different knots types using molecular se ... more

  • Research Institutes

    Scuola Internazionale Superiore di Studi Avanzati (SISSA)

    SISSA, the International School for Advanced Studies of Trieste, is an institute focused on postgraduate training and leading-edge research in various areas of Physics, Mathematics, and Neurosciences. SISSA was the first Italian university to offer the PhD degree, and has continued to do so ... more