My watch list
my.chemeurope.com  
Login  

Cotton fibres instead of carbon nanotubes

11-May-2015

Plant-based cellulose nanofibres do not pose a short-term health risk, especially short fibres, shows a study conducted in the context of National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64). But lung cells are less efficient in eliminating longer fibres.

Similar to carbon nanotubes that are used in cycling helmets and tennis rackets, cellulose nanofibres are extremely light while being extremely tear-resistant. But their production is significantly cheaper because they can be manufactured from plant waste of cotton or banana plants. "It is only a matter of time before they prevail on the market," says Christoph Weder of the Adolphe Merkle Institute at the University of Fribourg.

In the context of the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64), he collaborated with the team of Barbara Rothen-Rutishauser to examine whether these plant-based nanofibres are harmful to the lungs when inhaled. The investigation does not rely on animal testing; instead the group of Rothen-Rutishauser developped a complex 3D lung cell system to simulate the surface of the lungs by using various human cell cultures in the test tube.

The shorter, the better

Their results show that cellulose nanofibres are not harmful: the analysed lung cells showed no signs of acute stress or inflammation. But there were clear differences between short and long fibres: the lung cell system efficiently eliminated short fibres while longer fibres stayed on the cell surface.

"The testing only lasted two days because we cannot grow the cell cultures for longer," explains Barbara Rothen-Rutishauser. For this reason, she adds, they cannot say if the longer fibre may have a negative impact on the lungs in the long term. Tests involving carbon nanotubes have shown that lung cells lose their equilibrium when they are faced with long tubes because they try to incorporate them into the cell to no avail. "This frustrated phagocytosis can trigger an inflammatory reaction," says Rothen-Rutishauser. To avoid potential harm, she recommends that companies developing products with nanofibres use fibres that are short and pliable instead of long and rigid.

Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung (SNF)

Request information now

Recommend news PDF version / Print Add news to watchlist

Share on

Facts, background information, dossiers
  • cotton
  • Schweizerischer Nat…
  • cellulose nanofibres
  • Uni Fribourg
More about Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung
  • News

    Diamond watch components

    SNSF-funded researchers have developed a new technique for carving materials to create micromechanical systems. In particular, they have created a miniscule watch component out of synthetic single-crystal diamond. Diamond is very hard and elastic, a very good thermal conductor and highly tr ... more

    The first precise measurement of a single molecule's effective charge

    For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics. Electrical charge is one of the key properties that allows molecule ... more

    The key to chemical transformations

    Chemist Xile Hu is the winner of the National Latsis Prize for 2017. Hu, a professor at the École Polytechnique Fédérale de Lausanne, was recognised for his outstanding scientific career and his original contributions to the fundamental understanding of catalysis. Catalysis is a field of ch ... more

  • Videos

    The key to chemical transformations

    Chemist Xile Hu is awarded the National Latsis Prize 2017, Xile Hu is Professor of Chemistry at the Swiss Federal Institute of Technology in Lausanne (EPFL). He is honored for his impressive scientific career and outstanding research on the fundamental understanding of catalysis. more

More about Université de Fribourg
  • News

    Secrets behind high temperature superconductors revealed

    Scientists from Queen Mary, University of London and the University of Fribourg have found evidence that magnetism is involved in the mechanism behind high temperature superconductivity. Writing in Nature Materials , Dr Alan Drew from Queen Mary's Department of Physics and his colleagues at ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE