My watch list  

An Exceptionally Effective Lead-Detection Protein

Results may inspire new treatments for lead poisoning


Scientists from the U.S. Department of Energy's Brookhaven National Laboratory and the University of Chicago have discovered that a member of a well-known protein family is better at detecting lead than any other known substance. Learning more about the protein's structure and lead-detection mechanism, they say, may lead to new ways to synthesize drugs or to develop treatments for lead poisoning, a worldwide problem that, in the U.S. alone, inflicts irreversible physical damage to half a million children each year.

"This protein can detect very few lead ions in a sea of other metals," said biologist Daniel (Niels) van der Lelie, one of the Brookhaven scientists who participated in the study. "That's an unprecedented, remarkable ability, and we are excited to learn how the protein does it."

In fact, the results, published in the March 31, 2005, online version of Angewandte Chemie International Edition, show that the protein is more than one thousand times more likely to bind to lead than other metals, such as mercury, zinc, or copper.

To determine this, the researchers used a method developed by one of the paper's co-authors, University of Chicago chemist Chuan He. They bind the protein to a short segment of double-stranded DNA that will fluoresce if the DNA strands are separated. With no lead nearby, the two strands of the DNA double helix stay "zipped," and there is no fluorescence. But when a common lead ion, known as lead(II), binds to the protein, the DNA strands "unzip," releasing a burst of ultraviolet light.

The scientists tested the protein's response to the presence of several metals. Most elicited little to no reaction from the protein, producing fluorescence barely above the constant background level. The lead(II) ion, however, induced a large jump in the fluorescence intensity - three times brighter than background.

Van der Lelie, He, and their collaborators plan to further study the structure of the protein, which may reveal why the molecule is so selectively "interested" in lead ions. This information could be used to design lead-poisoning treatment agents that would bind only to lead ions in the body. Current treatments are not so selective, also stripping away beneficial metals, such as iron and zinc, which results in serious side effects. The scientists will also attempt to optimize the DNA-probe method so that the probe emits visible light. This would simplify detection and increase the probe's practicality.

Facts, background information, dossiers
More about University of Chicago
More about Brookhaven National Laboratory
  • News

    Cause of cathode degradation identified for nickel-rich materials

    A team of scientists including researchers at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and SLAC National Accelerator Laboratory have identified the causes of degradation in a cathode material for lithium-ion batteries, as well as possible remedies. Their findings ... more

    Carrying and releasing nanoscale cargo with 'nanowrappers'

    This holiday season, scientists at the Center for Functional Nanomaterials (CFN)--a U.S. Department of Energy Office of Science User Facility at Brookhaven National Laboratory--have wrapped a box of a different kind. Using a one-step chemical synthesis method, they engineered hollow metalli ... more

    Detecting light in a different dimension

    Scientists from the Center for Functional Nanomaterials (CFN) have dramatically improved the response of graphene to light through self-assembling wire-like nanostructures that conduct electricity. The improvement could pave the way for the development of graphene-based detectors that can q ... more

  • Videos

    Antifogging Short

    Split-screen video captures water droplets condensing on the cylindrical nanotexture (left) and nanocone texture (right) for 30 seconds. Neighboring droplets on the nanocone texture combine and spontaneously jump off, but those on the nanocylinder texture become stuck. Credit: David Quéré, ... more

    Origin of High-Temperature Superconductivity in Copper-Oxide Compound

    Brookhaven Lab physicist Ivan Bozovic explains why a copper-oxide compound can conduct electricity without resistance at temperatures well above those required by conventional superconductors. more

    How Magnetic Moments in MnO Fluctuate at Different Temperatures

    An animation showing how the magnetic moments in manganese oxide (MnO) fluctuate at different temperatures. The orderly antiparallel alignment of the Mn ions is maintained at lower temperatures. At higher temperatures, this long-range order disappears, but short-range correlations persist u ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE