02-Jan-2006 - Angewandte Chemie

QuickNanocontainer Construction

Finished in one step: nanoscale octahedral nanocontainers

Nanoscale containers are in high demand because of their ability to enclose molecules. They can, for example, be used asmolecular reaction chambers for controlled chemical reactions or as transporters and storage containers for drugs or pesticides; they can also filter poisonous substances out of water. The synthesis of such capsules is not easy. American researchers at Rutgers University in New Jersey have now produced an octahedral nanocontainer whose 18 components can be assembled in a single, elegant reaction step.

The chemical linking of individual components into a molecular container big enough to hold multiple or large guest molecules is usually an extremely fiddly undertaking, involving many complicated reaction steps. Therefore, a different alternative has been used until now: individual components with the ability to organize themselves into a supermolecular structure by a self-assembly process. In this process the components are not held together by solid chemical (covalent)bonds; instead, they are an aggregate of individual molecules. A team headed by Ralf Warmuth has now found a way to assemble the individual components into a single, giant, container-shaped molecule just as smoothly and spontaneously.

For their synthesis, the researchers used two different 'building blocks', six large, bowl-shaped molecules and twelve small molecules to act as bridging elements. Each bowl has four groups of atoms that particularly like to form links with the reactive amino groups at the ends of the bridges. The two substances need only be dissolved and mixed together in the right proportions to react, to form octahedral capsule-like macromolecules. The success of this small miracle depends on the flawless formation of an astounding 24 new imine bonds. How does this work? There are two secrets: The octahedral arrangement is the most energetically favorable of the possible forms, and the formation of the bonds is reversible, meaning that the freshly formed imine bonds can easily come apart again under the reaction conditions used. The components thus have the opportunity to arrange themselves into the preferred configuration little by little.

Original publication: R. Warmuth et al.; "One-Pot, 18-Component Synthesis of an Octahedral NanocontainerMolecule"; Angewandte Chemie International Edition 2005.

Facts, background information, dossiers
More about Angewandte Chemie
  • News

    Making Drinking Water Bacteria-Free

    Water contaminated with bacteria is a large threat to global health. A Chinese research team has described a simple new method of disinfection in the journal Angewandte Chemie. It is based on tiny biocompatible assemblies of atoms, known as quantum dots, made of silver sulfide with caps mad ... more

    Vanillin from Kraft Lignin

    Huge amounts of technical or Kraft lignin are formed during pulp production. This lignin is difficult to process and so is usually just incinerated for heat production. A team of researchers, reporting in the journal Angewandte Chemie, have now succeeded in developing a green method for rec ... more

    Two Worlds, One Material

    Until now, it has been clear: you can have a metal or a plastic, but not both in one. However, things don’t have to stay that way. In the journal Angewandte Chemie, a Chinese research team has now reported a polymer with a metallic backbone that is conductive, thermally stable, and has inte ... more

More about Rutgers University
  • News

    New device can measure toxic lead within minutes

    Rutgers researchers have created a miniature device for measuring trace levels of toxic lead in sediments at the bottom of harbors, rivers and other waterways within minutes - far faster than currently available laboratory-based tests, which take days. The affordable lab-on-a-chip device co ... more

    'Blinking" crystals may convert CO2 into fuels

    Imagine tiny crystals that "blink" like fireflies and can convert carbon dioxide, a key cause of climate change, into fuels. A Rutgers-led team has created ultra-small titanium dioxide crystals that exhibit unusual "blinking" behavior and may help to produce methane and other fuels, accordi ... more

    How to make it easier to turn plant waste into biofuels

    Researchers have developed a new process that could make it much cheaper to produce biofuels such as ethanol from plant waste and reduce reliance on fossil fuels. Their approach, featuring an ammonia-salt based solvent that rapidly turns plant fibers into sugars needed to make ethanol, work ... more