19-Aug-2008 - Princeton University

Monash team learns from nature to split water

An international team of researchers led by Monash University has used chemicals found in plants to replicate a key process in photosynthesis paving the way to a new approach that uses sunlight to split water into hydrogen and oxygen.

Professor Leone Spiccia, Mr Robin Brimblecombe and Dr Annette Koo from Monash University teamed with Dr Gerhard Swiegers at the CSIRO and Professor Charles Dismukes at Princeton University to develop a system comprising a coating that can be impregnated with a form of manganese, a chemical essential to sustaining photosynthesis in plant life.

"We have copied nature, taking the elements and mechanisms found in plant life that have evolved over 3 billion years and recreated one of those processes in the laboratory," Professor Spiccia said.

"A manganese cluster is central to a plant's ability to use water, carbon dioxide and sunlight to make carbohydrates and oxygen. Man-made mimics of this cluster were developed by Professor Charles Dismukes some time ago, and we've taken it a step further, harnessing the ability of these molecules to convert water into its component elements, oxygen and hydrogen," Professor Spiccia said. "The breakthrough came when we coated a proton conductor, called Nafion, onto an anode to form a polymer membrane just a few micrometres thick, which acts as a host for the manganese clusters."

"Normally insoluble in water, when we bound the catalyst within the pores of the Nafion membrane, it was stabilised against decomposition and, importantly, water could reach the catalyst where it was oxidised on exposure to light."

This process of "oxidizing" water generates protons and electrons, which can be converted into hydrogen gas instead of carbohydrates as in plants.

"Whilst man has been able to split water into hydrogen and oxygen for years, we have been able to do the same thing for the first time using just sunlight, an electrical potential of 1.2 volts and the very chemical that nature has selected for this purpose," Professor Spiccia said.

Testing revealed the catalyst assembly was still active after three days of continuous use, producing oxygen and hydrogen gas in the presence of water, an electrical potential and visible light.

Facts, background information, dossiers
  • photosynthesis
  • oxygen
  • Monash University
More about Princeton University
  • News

    When a band falls flat: Searching for flatness in materials

    The world’s first catalog of flat band materials, published in Nature journal, could reduce the serendipity in the search for new materials with exotic quantum properties, such as magnetism and superconductivity, with applications in memory devices or in long-range dissipationless transport ... more

    Researchers measure the breakup of a single chemical bond

    The team used a high-resolution atomic force microscope (AFM) operating in a controlled environment at Princeton’s Imaging and Analysis Center. The AFM probe, whose tip ends in a single copper atom, was moved gradually closer to the iron-carbon bond until it was ruptured. The researchers me ... more

    New route to chemically recyclable plastics

    As the planet's burden of rubber and plastic trash rises unabated, scientists increasingly look to the promise of closed-loop recycling to reduce waste. A team of researchers at Princeton's Department of Chemistry announces the discovery of a new polybutadiene molecule - from a material kno ... more

  • Videos

    “Perfect Glass”

    Princeton University researchers have developed a computational model for creating a "perfect glass" that never crystallizes — even at absolute zero. The molecular structure of a glass suggests it should have liquid properties, yet it behaves with the rigidity of a solid. The researchers ex ... more

More about Commonwealth Scientific and Industrial Research Organisation
More about Monash University