24-Feb-2009 - Rutgers, The State University of New Jersey

Rutgers physicists find unusual electronic properties in bismuth-based crystalline material

Material has potential to improve solar cell efficiency, computer chip design

Physicists at Rutgers University have discovered unusual electronic properties in a material that has potential to improve solar cell efficiency and computer chip design. The scientists determined that a crystal made of bismuth, iron and oxygen can perform an electronic feat typically not feasible with conventional semiconductors. It acts as a reversible diode – essentially an electronic turnstile that lets current flow in one direction under certain conditions and in the opposite direction under different conditions. Traditional semiconductor diodes are not reversible – the direction of current flow that they allow is fixed during fabrication. The researchers reported their findings in Science Express.

The scientists also discovered that diodes made from this material generate current when light falls on them, making the material a potential candidate for future solar cells. The material appears very sensitive to light at the blue end of the spectrum, a property that has the potential to increase solar cell efficiency.

"We've reached the upper limit of efficiency with today's solar cells," said Sang-Wook Cheong, physics professor in the School of Arts and Sciences and one of the paper's five authors. "While we still don't know how efficiently this material will ultimately perform as a solar cell, we do need to keep investigating alternate technologies that show potential for improvement."

The crystal that Cheong and his colleagues investigated is a ferroelectric material, meaning that the crystal exhibits electrical polarization, or alignment. This polarization, which the scientists believe controls the crystal's ability to act as a diode, is known as a "bulk effect" – a characteristic that permeates the whole crystal. In contrast, traditional semiconductors act as diodes based on electrical effects at the interfaces between two different materials. By applying an external voltage on the ferroelectric crystal, the polarization of the material reverses, along with the direction that the diode allows electricity to flow.

"This could make computer chip designs more flexible," said Cheong. "Engineers could design a single circuit element that performs one task under a certain configuration and another task under a different configuration."

Facts, background information, dossiers
More about Rutgers University
  • News

    New device can measure toxic lead within minutes

    Rutgers researchers have created a miniature device for measuring trace levels of toxic lead in sediments at the bottom of harbors, rivers and other waterways within minutes - far faster than currently available laboratory-based tests, which take days. The affordable lab-on-a-chip device co ... more

    'Blinking" crystals may convert CO2 into fuels

    Imagine tiny crystals that "blink" like fireflies and can convert carbon dioxide, a key cause of climate change, into fuels. A Rutgers-led team has created ultra-small titanium dioxide crystals that exhibit unusual "blinking" behavior and may help to produce methane and other fuels, accordi ... more

    How to make it easier to turn plant waste into biofuels

    Researchers have developed a new process that could make it much cheaper to produce biofuels such as ethanol from plant waste and reduce reliance on fossil fuels. Their approach, featuring an ammonia-salt based solvent that rapidly turns plant fibers into sugars needed to make ethanol, work ... more