27-Oct-2009 - Forschungszentrum Jülich GmbH

0.2 second test for explosive liquids

Since a failed terrorist attack in 2006, plane passengers have not been able to carry bottles of liquid through security at airports, leaving some parched at the airport and others having expensive toiletries confiscated, but work by a group of physicists in Germany is paving the way to eliminate this necessary nuisance.

Research published, Tuesday, 20 October, in IOP Publishing's Superconductor Science and Technology explains how a new form of spectroscopy, a scientific method that uses electromagnetic radiation to identify materials, and a novel nanoelectronic device to detect signals, can identify explosive liquids, or liquid components for the fabrication of explosives, in usual plastic bottles almost instantly.

Discussing the different molecular signatures, or atomic make-up, of simple liquids such as water, ethanol and acetone (a flammable liquid), the researchers from Forschungszentrum Jülich, an inter-disciplinary research centre situated between Aachen and Cologne in Germany, explain the need to extend the frequency range of spectral analysis to increase the reliability of liquid explosive detection.

While the idea of using electromagnetic radiation to inspect the properties of liquids is already thought a viable route to detecting explosive liquids, previous devices, working at single fixed frequencies within a small frequency range, cannot unambiguously distinguish mixtures of different liquids containing dangerous components which can be used as an explosive.

The researchers from Jülich have suggested a fast and reliable way to increase the range of frequencies that their spectrometer can analyse, thereby verifying the molecular signature of the liquid and creating a much more detailed 'thumbprint' that can be checked against the range of possibly dangerous liquids available to terrorists.

The researchers' new method of spectrometry is called Hilbert spectroscopy. It works over a wider range of frequencies, from a few gigahertz to a few terahertz. With the incorporation of a nanoscale electronic device, a Josephson junction, the researchers have undertaken practical detection experiments which directly transform the electromagnetic spectrum received by the spectrometer into an electrical signal which warns of suspicious fluids.

As the researchers write, "Our first experiments showed that with simple measurements at four frequencies ranging from microwave to terahertz we are able to perform fast and reliable identification of various widespread liquids, such as water, ethanol, propanol and acetone, placed in a plastic container. We have made and continue to make significant steps towards a practical device."

Original publication: M Lyatti et al.; "Liquid identification by Hilbert spectroscopy"; Supercond. Sci. Technol. 2009, 22, 114005

Facts, background information, dossiers
More about Forschungszentrum Jülich
  • News

    Ultrafast Electron Dynamics in Space and Time

    In textbooks and explanatory videos, they are often depicted as colourful balloons or clouds: electron orbitals provide information on the whereabouts of electrons in molecules, a bit like fuzzy snapshots. In order to understand the exchange of electrons in chemical reactions, it is not onl ... more

    Increasing the Activity of Catalysts

    A layer as thin as a single atom makes a huge difference: On the surface of an electrode, it doubles the amount of water split in an electrolysis system without increasing the energy requirements. Thus, the ultrathin layer also doubles the amount of hydrogen produced without increasing cost ... more

    Oxide tuning by ion transfer

    Most materials are either magnetic, or they are not. However, scientists at Forschungszentrum Jülich have now discovered a new mechanism that allows for tailoring the electronic and magnetic properties of a material in a targeted and reversible manner. The effect depends on the transfer of ... more

  • Companies

    Forschungszentrum Jülich GmbH, Projektträger Jülich

    Supporting the Federal Ministry of Education and Research (BMBF), Economics and Technology (BMWA), Environment (BMU) and several Federal States in funding of research. more

More about Institute of Physics
  • News

    Graphene microphone outperforms traditional nickel and offers ultrasonic reach

    The researchers, based at the University of Belgrade, Serbia, created a vibrating membrane - the part of a condenser microphone which converts the sound to a current - from graphene, and were able to show up to 15 dB higher sensitivity compared to a commercial microphone, at frequencies up ... more

    Exploring the physics of a chocolate fountain

    A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight downwards. "Chocolate fountains are just cool, aren't they!" says ... more

    Using magnetic permeability to store information

    Scientists have made promising steps in developing a new magnetic memory technology, which is far less susceptible to corruption by magnetic fields or thermal exposure than conventional memory. The findings, which report the use of magnetic permeability - how easily a magnetic field will ma ... more