20-Apr-2018 - University at Buffalo

This 2-D nanosheet expands like a Grow Monster

Grow Monsters. Expandable water toys. Whatever you call them, they're plastic-like figurines that swell when placed in water.

New materials science research borrows from this concept; only instead of water, engineers discovered that tiny crystal lattices called "self-assembling molecular nanosheets" expand when exposed to light.

The advancement could form the backbone of new light-powered actuators, oscillators and other microscopic electronic components useful in the development of artificial muscles and other soft robotic systems.

The work centers on a materials science concept known as photostriction, which means turning light directly into mechanical motion, says the study's co-lead author Shenqiang Ren, a researcher at the University at Buffalo's RENEW Institute, which works to solve complex environmental problems.

"We're using light -- anything from sunlight to a simple laser -- to cause the two-dimensional nanosheet to expand at an incredibly fast rate," he says.

How fast? Sub-milliseconds. The process is aided by the photostrictive effect, which essentially bypasses the need to create electricity to move something, says Ren, PhD, a professor in the Department of Mechanical and Aerospace Engineering in the UB School of Engineering and Applied Sciences.

The nanosheet -- made of the molecular charge-transfer compound DBTTF and buckyball molecules -- can expand up to 5.7 percent of its original size, according to the study.

While that may not sound like much, consider this: a 200-pound man that expands 5.7 percent would need to add 11.4 pounds in less than a second to keep pace with the light-triggered nanosheet.

Expandable water toys grow much more than that, but they do not revert to their original size. By contrast, the nanosheet does, making it potentially very useful as a light-induced actuator in artificial muscles, which has applications in everything from medical devices to industrial robotics.

Facts, background information, dossiers
  • material science
  • new materials
  • artificial muscles
  • nanosheets
  • soft robotic systems
  • photostriction
  • Buckminsterfullerene
More about University at Buffalo
  • News

    How sugar-loving microbes could help power future cars

    It sounds like modern-day alchemy: Transforming sugar into hydrocarbons found in gasoline. But that’s exactly what scientists have done. In a study in Nature Chemistry, researchers report harnessing the wonders of biology and chemistry to turn glucose (a type of sugar) into olefins (a type ... more

    Finally, 3D-printed graphene aerogels for water treatment

    Graphene excels at removing contaminants from water, but it's not yet a commercially viable use of the wonder material. That could be changing. In a recent study, University at Buffalo engineers report a new process of 3D printing graphene aerogels that they say overcomes two key hurdles -- ... more

    Researchers report quantum-limit-approaching chemical sensing chip

    University at Buffalo researchers are reporting an advancement of a chemical sensing chip that could lead to handheld devices that detect trace chemicals -- everything from illicit drugs to pollution -- as quickly as a breathalyzer identifies alcohol. The chip, which also may have uses in f ... more

  • Videos

    A Glow-in-the-Dark Battery Technology

    University at Buffalo scientists have identified a fluorescent dye called BODIPY as an ideal material for storing energy in large-scale rechargeable batteries. Such batteries could one day be used to stockpile energy harvested from green sources such as solar and wind. more