My watch list
my.chemeurope.com  
Login  

Shine bright like a nanoaggregate

Highly luminescent inks made from copper–iodine hybrid clusters with aggregation-induced emission

29-May-2018

© Wiley-VCH

Chinese scientists have turned copper–iodine cluster molecules into aggregated, highly luminescent nanostructures for use in light-emitting diodes (LEDs). The solid-state assemblies made of complexes of the copper–iodine cluster with phosphor–organic compounds as ligands are easily prepared, cheap, and can emit light in many colors, they report. The nanoaggregates can be used as luminescent inks for invisible paintings and color coatings for LEDs.

Luminescence is light emission triggered by some form of energy, which can be chemical, electrical, or radiation. For a long time, scientists thought that aggregation would be detrimental to luminescence. But in some substances, aggregation can be beneficial, researchers reported for the first time in 2001 when they observed that conformational changes turned a weak luminophore into a strong emitter. Since then, research on the so-called aggregation-induced emission (AIE) compounds has grown fast. One of the reasons: in real-world applications such as luminescent coatings and inks, the pigments usually adopt an aggregated state.

The team led by Hong-Bin Yao at the University of Science and Technology of China in Hefei, China, explores the preparation routes to AIE compounds, with the goal to prepare inks on a larger scale and without a big budget. A stable cluster of copper and iodine grabbed their attention. In combination with common phosphine ligands, this cluster was known to exhibit strong luminescence in its aggregated state, the typical AIE phenomenon. But a reliable way to get to that state, let alone applications, were not reported.

To prepare the AIE emitter, the starting compound must be present as a single, soluble molecule, then it is assembled and turned into something nanoparticular and non-soluble. The authors tackled the problem by employing an emulsifying–demulsifying process. By shaking the non-emitting complex dissolved in an organic solvent with a surfactant, they managed to confine the copper–iodine hybrid clusters in small droplets to obtain AIE-active nanoaggregates in a simple but effective way.

The method has another advantage: when swapping the ligands of the complex, the colors changed. The scientists replaced the phosphor ligand with a set of nitrogen-containing ligands and obtained a beautiful array of luminescent inks in colors ranging from orange to blue. With which they clearly enjoyed painting: Using their aqueous inks luminescing in orange, yellow, and sky-blue, they transformed a black-and-white sketch of an underwater world into an atmospheric exquisite aquarelle visible only under UV light.

Not only inks for paintings, but also color coatings for LED lamps were prepared. Normally, white LED light is difficult to achieve. Here, the researchers coated blue LED sources with yellow luminescent copper–iodine hybrids and observed the LED emission turning white. However, some adjustments still need to be made to increase the efficiency, the authors admitted.

Original publication:

Chen Chen, Rui‐Han Li, Bai‐Sheng Zhu, Kun‐Hua Wang, Ji‐Song Yao, Yi‐Chen Yin, Ming‐Ming Yao, Prof. Dr. Hong‐Bin Yao, Prof. Dr. Shu‐Hong Yu; "Highly Luminescent Inks: Aggregation‐Induced Emission of Copper–Iodine Hybrid Clusters"; Angew. Chem.; 2018

Chen Chen, Rui‐Han Li, Bai‐Sheng Zhu, Kun‐Hua Wang, Ji‐Song Yao, Yi‐Chen Yin, Ming‐Ming Yao, Prof. Dr. Hong‐Bin Yao, Prof. Dr. Shu‐Hong Yu; "Highly Luminescent Inks: Aggregation‐Induced Emission of Copper–Iodine Hybrid Clusters"; Angew. Chem. Int. Ed.; 2018

Facts, background information, dossiers
More about University of Science and Technology of
More about Wiley-VCH
  • News

    Chemical hydrogen storage system

    Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems. Scientists at the Weizmann Institute of Science, Israel, have now developed a chemical storage system based on simple and abundant ... more

    For a Better Contrast

    Magnetic resonance imaging (MRI) has emerged as one of the most powerful clinical imaging tools because of its superb spatial resolution and soft tissue contrast, especially when using contrast agents. In the European Journal of Inorganic Chemistry, scientists have presented a new kind of n ... more

    A Successful Coupling

    Coupled oxygen transfer and electron transfer reactions that use cofactors are enzymatic reactions of crucial significance to all lifeforms from bacteria to vertebrates. In the European Journal of Inorganic Chemistry, scientists have introduced a model for the enzyme sulfite oxidase. It is ... more

  • Companies

    Wiley-VCH Verlag GmbH & Co. KGaA

    Wiley-VCH publishes monographs, textbooks, major references works and journals in print or online. Wiley-VCH can look back on over 80 years of publishing in chemistry, materials sciences, physics and the life sciences. more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE