17-Jan-2019 - South China Normal University

Ammonia by Phosphorus Catalysis

Ammonia synthesis through electroreduction of nitrogen on black phosphorus nanosheets

More than 100 years after the introduction of the Haber–Bosch process, scientists continue to search for alternative ammonia production routes that are less energy demanding. Chinese scientists have now discovered that black phosphorus is an excellent catalyst for the electroreduction of nitrogen to ammonia. According to their study, layered black phosphorus nanosheets are a highly selective and efficient catalyst in this process.

Ammonia is an essential raw material in all industrial areas, from agriculture to fine chemicals and the pharmaceutical industry. For more than a century, it has been synthesized industrially by the Haber–Bosch process, in which nitrogen from air is reduced with hydrogen or synthesis gas under high pressure and temperature over a transition-metal catalyst. However, the energy demand of this process is so high that one to two percent of the global energy supply is devoted to industrial production of ammonia.

Researchers are in search of milder alternatives, which employ catalysts that operate under ambient conditions. Metal-free alternatives are especially desirable. A highly interesting candidate is phosphorus in its lowest reactivity, nontoxic form: black phosphorus. This material is a rising star in electronic applications because of its metallic-like appearance and unusual electronic properties. Moreover, its puckered two-dimensional sheet-like structure may provide the necessary edges and sites for adsorption and molecular activation.

With this idea in mind, researcher Haihui Wang at the South China University of Technology, Guangzhou, China, and colleagues, prepared thin layers of bulk black phosphorus, “by a facile liquid exfoliation method,” as stated in their publication. The catalyst nanosheets were included in a carbon fiber electrode for electrolysis. To provide a nitrogen supply, a hydrochloride electrolyte solution was saturated with nitrogen.

On application of a voltage, the electrode readily and selectively produced ammonia from nitrogen, and the layered black phosphorus even outperformed “most nonmetallic and metal-base catalysts reported at present,” added the authors. The extraordinary activity and selectivity of this material are explained by the structure and energetics of the phosphorus sheets.

What is so special about phosphorus? With theoretical calculations, the authors found that the zigzag arrangement in the phosphorus layers, in contrast to other layered or flat materials, provided ideal sites for nitrogen adsorption and the electronic structure at the edges was best suited for binding, activating, and reducing nitrogen by a low-energy pathway.

Having explained the extraordinary activity and selectivity of the layered black phosphorus catalyst, the authors admitted that—despite the generally good stability of black phosphorus under ambient conditions—its performance declined in the long term because of oxidation. “Thus, further improvements in preventing black phosphorus degradation in the electrolyte will be beneficial,” they concluded.

This work opens up a novel and attractive application for black phosphorus. In electrocatalytic nitrogen reduction, the performance of black phosphorus is superior to other nonmetallic and even metallic catalysts, suggesting that this material may soon play a bigger role in electrocatalysis. In time, perhaps even the Haber–Bosch process will have a competitor.

Facts, background information, dossiers
More about SCNU
  • News

    Economical PEF Production

    One possible replacement for drink containers made from PET is polyethylene furandicarboxylate (PEF), made from renewable resources. However, the production of the raw material for PEF from biomass is still rather inefficient. A new titanium-based photocatalyst could be about to change this ... more

    Novel SERS substrate allows fast cancer cell imaging

    Fluorescence imaging is typically used to study biomolecules with high sensitivity and resolution, but many biological molecules are fluorescent themselves, limiting the potential of this technique. Surface enhanced Raman spectroscopy (SERS) is capable of high sensitivity but is not inhibit ... more

More about Angewandte Chemie
  • News

    Nanocrystals Store Light Energy and Drive Chemical Reactions

    Chemistry is increasingly making use of the trick plants can do with photosynthesis: driving chemical reactions that run poorly or do not occur spontaneously at all with light energy. This requires suitable photocatalysts that capture light energy and make it available for the reaction. In ... more

    Crystals Generate Electricity from Heat

    To convert heat into electricity, easily accessible materials from harmless raw materials open up new perspectives in the development of safe and inexpensive so-called thermoelectric materials. A synthetic copper mineral acquires a complex structure and microstructure through simple changes ... more

    Spectroscopically Controlled Quantum Bits

    Molecules could make useful systems for quantum computers, but they must contain individually addressable, interacting quantum bit centers. In the journal Angewandte Chemie, a team of researchers has now presented a molecular model with three different, coupled qubit centers. As each center ... more