25-Sep-2019 - Max-Planck-Institut für Polymerforschung

How to design efficient materials for OLED displays

For applications such as light-emitting diodes or solar cells, organic materials are nowadays in the focus of research. These organic molecules could be a promising alternative to currently used semiconductors such as silicon or germanium and are used in OLED displays. A major problem is that in many organic semiconductors the flow of electricity is hampered by microscopic defects. Scientists around Dr. Gert-Jan Wetzelaer and Dr. Denis Andrienko of the Max-Planck-Institute for Polymer Research have now investigated how organic semiconductors can be designed such that the electric conduction is not influenced by these defects.

The basic principle of the first light bulb, invented by Thomas Edison in the 19th century, was quite simple: Electrons – negatively charged particles – flow through a carbon filament and create light by converting their energy to light and heat. Nowadays, the physics of the generation of light in semiconducting devices is more complex: Electrons flow through a device and release their energy at a given point in the device. For this, they have to find a free place, i. e. a place that isn’t occupied by an electron - at a deeper lying energy level. This free place can be viewed as a sort of positive charge, a so called hole. If the electron jumps down into the hole, its energy is released in the form of light. Based on this principle, an organic light-emitting diode (OLED) converts electric current into light.

The efficiency of such a device strongly depends on how good holes and electrons can be conducted. If either electrons or holes are trapped by defects, meaning that they cannot contribute to the current anymore, then an excess of one type of charge exists. For example, in the case that holes are trapped, there are more electrons than holes, meaning only a part of the electrons can create light and the efficiency of the OLED is reduced.

“In our newest experiments, we examined a large range of organic semiconductors and found out the main parameters that are essential for equal and defect-free conduction of both holes and electrons”, says Gert-Jan Wetzelaer (Department of Prof. Paul Blom). In a semiconductor, electrons are moving at a higher energy level, whereas holes move at a level lower (deeper) in energy. The scientists found that the conduction of both charge types strongly depends on the position of these energy levels. “Depending on the energy of these levels the charge transport can be dominated either by electrons or holes or, with the right choice of energy levels, they contribute equally to the charge transport,” says Wetzelaer.

In computer simulations, scientists around Denis Andrienko (Department of Prof. Kurt Kremer) had a deeper look at the origin of these charge traps: “In our simulations we introduced clusters of water molecules in the semiconductor, which may accumulate in little pockets in the semiconductor”, explains Andrienko. “We found that these clusters of water molecules can function as a hole trap, leading to electron-dominated organic semiconductors. By contrast, for hole-dominated semiconductors, oxygen related defects capture electrons. As a result, we could show that highly unipolar charge transport for either holes or electrons is governed by a very small amount of defects, such as water and oxygen.” Unfortunately, removing such defects completely has proven challenging.

Therefore, the Mainz researchers are able to define how to design highly efficient organic semiconductors in the future: The different energy levels of the material should be in a certain range, which strongly reduces the influence of oxygen and water molecules that are the main cause for charge trapping. Based on this concept, the first highly efficient OLEDs with defect-free electrical conduction have recently been realized.

Facts, background information, dossiers
  • electrons
  • organic light-emitt…
  • displays
More about MPI für Polymerforschung
  • News

    Microscopic structures could further improve perovskite solar cells

    Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber fro ... more

    When ions rattle their cage

    Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecu ... more

    Harnessing the rain for hydrovoltaics

    Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies ... more

More about Max-Planck-Gesellschaft
  • News

    COVID-19 impacts on the Earth System

    COVID-19 immediately affects the health, economy and social well-being in our personal lives. Yet, the consequences on the entire Earth System, in particular the ones emerging from the widespread sheltering and lock-down measures, may be much more far-fetching and long-lasting. This has bee ... more

    Self-healing soft material outsmarts nature

    A soft material that heals itself instantaneously is now reality. A team of scientists at the Max Planck Institute for Intelligent Systems and at Pennsylvania State University tune the nanostructure of a new stretchable material in such a way that it now entirely recovers its structure and ... more

    Microscopic structures could further improve perovskite solar cells

    Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber fro ... more