13-Mar-2012 - University of Michigan

Fukushima lesson: Prepare for unanticipated nuclear accidents

A year after the crisis at Japan's Fukushima Daiichi nuclear power plant, scientists and engineers remain largely in the dark when it comes to fundamental knowledge about how nuclear fuels behave under extreme conditions, according to a University of Michigan nuclear waste expert and his colleagues.

In an article in Science, U-M's Rodney Ewing and two colleagues call for an ambitious, long-term national research program to study how nuclear fuels behave under the extreme conditions present during core-melt events like those that occurred at Fukushima following the March 11, 2011, magnitude 9.0 earthquake and tsunami.

Three of the plant's six boiling-water reactors suffered partial core-melt events that involved tremendously high temperatures and powerful radiation fields, as well as interaction between seawater and nuclear fuel. Many tons of seawater were used to cool the overheated reactors and nearby spent-fuel storage ponds, and direct discharge of contaminated seawater to the ocean and groundwater occurred through approximately April 8.

"What I realized while watching all of this was how little we actually knew about what happens if you take hot seawater and pour it on nuclear fuel," said Ewing, a professor in the Department of Earth and Environmental Sciences, the Department of Nuclear Engineering and Radiological Sciences, and the Department of Materials Science and Engineering. Ewing is also a member of the U.S. Nuclear Waste Technical Review Board.

"No one, as far as I know, had asked the question, 'Well, what happens when you do this? Are we doing something really good or really bad?'" Ewing said. "That kind of information really wasn't available, and that expertise, as far as I could see, wasn't there to be called upon."

The use of seawater at Fukushima underscores the need for fundamental nuclear-fuel knowledge that can be applied over a range of unanticipated situations, Ewing said. The research should include studies of the various radioactive materials released from damaged fuel during a core-melt incident, as well as a thorough examination of how nuclear fuel interacts with fresh water and seawater, he said.

Such studies could lead to predictive models that would help nuclear plant operators respond to unforeseen events, taking appropriate and timely action to minimize impacts on the environment and human health. The Science paper reviews the current understanding of nuclear-fuel interactions with the environment during core-melt accidents.

"Almost by definition, an accident will be something that puts you in a situation that you didn't anticipate," said Ewing, Edward H. Kraus Distinguished University Professor. "So the research focus should be on the situations you don't expect to deal with. Right now, that kind of knowledge is fragmentary, at best."

Facts, background information, dossiers
  • University of Michigan
  • nuclear reactors
  • nuclear fuels
  • nuclear meltdown
More about University of Michigan
  • News

    Solving the plastic shortage with a new chemical catalyst

    In a year that has already battered manufacturing supply chains, yet another shortage is complicating manufacturers' and consumers' lives: plastics, and the food packaging, automotive components, clothing, medical and lab equipment and countless other items that rely on them. But a new chem ... more

    Mapping quantum structures with light to unlock their capabilities

    A new tool that uses light to map out the electronic structures of crystals could reveal the capabilities of emerging quantum materials and pave the way for advanced energy technologies and quantum computers, according to researchers at the University of Michigan, the University of Regensbu ... more

    Repellent research: Ship coatings to reduce fuel, energy costs

    It can repel water, oil, alcohol and even peanut butter. And it might save the U.S. Navy millions of dollars in ship fuel costs, reduce the amount of energy that vessels consume and improve operational efficiency. The Office of Naval Research (ONR) is sponsoring work by Dr. Anish Tuteja, an ... more

  • Videos

    The Shape of Melting in Two Dimensions

    A movie depicting the hexatic phase transition of a two-dimensional hard particle system of hexagons under external pressure. On the left, red and green particle pairs indicate the structure of defects in the system. On the right, blue and yellow particles show how defects migrate within th ... more

    From Liquid To Gel: A New Test for Lead in Paint

    A new molecular gel recipe developed at the University of Michigan by Anne McNeil, Arthur F Thurnau Professor of Macromolecular Science, and is at the core of a prototype for a more accurate lead paint test.The new test is more clear and accurate than its counterparts. It consists of a vial ... more

    Icephobic Coating

    University of Michigan researchers demonstrate a durable ice-repellent coating that could help keep everything from airplanes to ships, power lines and windshields ice-free. more