My watch list
my.chemeurope.com  
Login  

'Poisoning' corrosion brings stainless magnesium closer

22-Aug-2013

In a discovery that could have major implications for the aerospace, automotive and electronics industries, scientists have found a way to dramatically reduce the corrosion rate of lightweight wonder metal magnesium: adding arsenic.

Weighing in at two thirds less than aluminium, magnesium is the lightest structural metal. It has many potential industrial applications, but uptake is severely restricted by its poor resistance to corrosion. Identification of methods to restrict magnesium corrosion is the first step in engineering such technology into functional alloys.

For the first time, a group of researchers, led by Monash University’s Associate Professor Nick Birbilis, have created a magnesium alloy with significantly reduced corrosion rates by adding a cathodic poison - arsenic.

They found that the addition of very low levels of arsenic to magnesium retards the corrosion reaction by effectively ‘poisoning’ the reaction before it completes.

Once magnesium is available in a more stainless, or corrosion-resistant, form wider use will lead to significant weight and energy savings in transportation industries. It has been the subject of significant research efforts concentrating on developing light metals.

Associate Professor Birbilis, of the Monash Department of Materials Engineering, said the discovery would contribute to the birth of more stainless magnesium products by exploiting cathodic poisons.

"This is a very important and timely finding. In an era of light-weighting for energy and emissions reductions, there is a great demand for magnesium alloys in everything from portable electronics to air and land transportation,” Associate Professor Birbilis said.

“Magnesium products are rapidly evolving to meet the demands of industry, but presently are hindered by high corrosion rates. The arsenic effect we discovered is now being trialled as a functional additive to existing commercial alloys.

“Our breakthrough will help develop the next generation of magnesium products, which must be more stainless.”

 

Facts, background information, dossiers
  • Commonwealth Scient…
  • University of Wales
More about Monash University
  • News

    Water solutions without a grain of salt

    An estimated 844 million people don't have access to clean water, while every minute a newborn dies from infection caused by lack of safe water and an unclean environment. Seawater desalination and wastewater recycling are two ways to ease the problem of water shortage, but conventional app ... more

    X-ray mapping enhances potential of lightweight magnesium

    A world-first study led by Monash University has discovered a technique and phenomenon that can be used for creating stronger, lightweight magnesium alloys that could improve structural integrity in the automobile and aerospace industries. Published in Nature Communications, researchers fro ... more

    Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution

    Newly developed tiny antennas, likened to spotlights on the nanoscale, offer the potential to measure food safety, identify pollutants in the air and even quickly diagnose and treat cancer, according to the Australian scientists who created them. The new antennas are cubic in shape. They do ... more

More about Commonwealth Scientific and Industrial Research Organisation
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE