31-Oct-2013 - Oregon State University

Aluminum should yield new technological advances

Researchers at Oregon State University and the University of Oregon announced a scientific advance that has eluded researchers for more than 100 years – a platform to fully study and understand the aqueous chemistry of aluminum, one of the world's most important metals.

The findings, reported in Proceedings of the National Academy of Sciences, should open the door to significant advances in electronics and many other fields, ranging from manufacturing to construction, agriculture and drinking water treatment.

Aluminum, in solution with water, affects the biosphere, hydrosphere, geosphere and anthrosphere, the scientists said in their report. It may be second only to iron in its importance to human civilization. But for a century or more, and despite the multitude of products based on it, there has been no effective way to explore the enormous variety and complexity of compounds that aluminum forms in water.

Now there is.

"This integrated platform to study aqueous aluminum is a major scientific advance," said Douglas Keszler, a distinguished professor of chemistry in the OSU College of Science, and director of the Center for Sustainable Materials Chemistry.

"Research that can be done with the new platform should have important technological implications," Keszler said. "Now we can understand aqueous aluminum clusters, see what's there, how the atomic structure is arranged."

Chong Fang, an assistant professor of chemistry in the OSU College of Science, called the platform "a powerful new toolset." It's a way to synthesize aqueous aluminum clusters in a controlled way; analyze them with new laser techniques; and use computational chemistry to interpret the results. It's simple and easy to use, and may be expanded to do research on other metal atoms.

"A diverse team of scientists came together to solve an important problem and open new research opportunities," said Paul Cheong, also an OSU assistant professor of chemistry.

The fundamental importance of aluminum to life and modern civilization helps explain the importance of the advance, researchers say. It's the most abundant metal in the Earth's crust, but almost never is found in its natural state. The deposition and migration of aluminum as a mineral ore is controlled by its aqueous chemistry. It's found in all drinking water and used worldwide for water treatment. Aqueous aluminum plays significant roles in soil chemistry and plant growth.

Aluminum is ubiquitous in cooking, eating utensils, food packaging, construction, and the automotive and aircraft industries. It's almost 100 percent recyclable, but in commercial use is a fairly modern metal. Before electrolytic processes were developed in the late 1800s to produce it inexpensively, it was once as costly as silver.

Now, aluminum is increasingly important in electronics, particularly as a "green" component that's cheap, widely available and environmentally benign.

Besides developing the new platform, this study also discovered one behavior for aluminum in water that had not been previously observed. This is a "flat cluster" of one form of aluminum oxide that's relevant to large scale productions of thin films and nanoparticles, and may find applications in transistors, solar energy cells, corrosion protection, catalytic converters and other uses.

Ultimately, researchers say they expect new technologies, "green" products, lowered equipment costs, and aluminum applications that work better, cost less and have high performance.

Facts, background information, dossiers
  • University of Oregon
More about Oregon State University
  • News

    Artificial intelligence to help protect bees from pesticides

    Researchers in the Oregon State University College of Engineering have harnessed the power of artificial intelligence to help protect bees from pesticides. Cory Simon, assistant professor of chemical engineering, and Xiaoli Fern, associate professor of computer science, led the project, whi ... more

    New clues help explain why PFAS chemicals resist remediation

    The synthetic chemicals known as PFAS, short for perfluoroalkyl and polyfluoroalkyl substances, are found in soil and groundwater where they have accumulated, posing risks to human health ranging from respiratory problems to cancer. New research from the University of Houston and Oregon Sta ... more

    Producing hydrogen from water

    Efficiently mass-producing hydrogen from water is closer to becoming a reality thanks to Oregon State University College of Engineering researchers and collaborators at Cornell University and the Argonne National Laboratory. The scientists used advanced experimental tools to forge a clearer ... more

More about University of Oregon
  • News

    University of Oregon scientists dissociate water apart efficiently with new catalysts

    University of Oregon chemists have made substantial gains in enhancing the catalytic water dissociation reaction in electrochemical reactors, called bipolar membrane electrolyzers, to more efficiently rip apart water molecules into positively charged protons and negatively charged hydroxide ... more

    How frogs' tongues become sticky

    Frogs' capture their prey with the sticky mucus covering their tongues, but this mucus isn't inherently adhesive. Frog mucus is thought to be pressure-sensitive, with tongue retraction strain triggering adhesion. A research team from Oregan State University, Aarhus University and Kiel Unive ... more

    New class of hydrogen sulfide donor molecules created

    Molecules with the potential to deliver healing power to stressed cells - such as those involved in heart attacks - have been created by University of Oregon researchers. The research - done at a cellular level in the lab and far from medical reality - involves the design of organic molecul ... more