17-May-2016 - Rice University

Microwaved nanoribbons may bolster oil and gas wells

Wellbores drilled to extract oil and gas can be dramatically reinforced with a small amount of modified graphene nanoribbons added to a polymer and microwaved, according to Rice University researchers.

The Rice labs of chemist James Tour and civil and environmental engineer Rouzbeh Shahsavari combined the nanoribbons with an oil-based thermoset polymer intended to make wells more stable and cut production costs. When cured in place with low-power microwaves emanating from the drill assembly, the composite would plug the microscopic fractures that allow drilling fluid to seep through and destabilize the walls.

The researchers said that in the past, drillers have tried to plug fractures with mica, calcium carbonate, gilsonite and asphalt to little avail because the particles are too large and the method is not efficient enough to stabilize the wellbore.

In lab tests, a polymer-nanoribbon mixture was placed on a sandstone block, similar to the rock that is encountered in many wells. The team found that rapidly heating the graphene nanoribbons to more than 200 degrees Celsius with a 30-watt microwave was enough to cause crosslinking in the polymer that had infiltrated the sandstone, Tour said. The microwave energy needed is just a fraction of that typically used by a kitchen appliance, he said.

"This is a far more practical and cost-effective way to increase the stability of a well over a long period," Tour said.

In the lab, the nanoribbons were functionalized -- or modified -- with polypropylene oxide to aid their dispersal in the polymer. Mechanical tests on composite-reinforced sandstone showed the process increased its average strength from 5.8 to 13.3 megapascals, a 130 percent boost in this measurement of internal pressure, Shahsavari said. Similarly, the toughness of the composite increased by a factor of six.

"That indicates the composite can absorb about six times more energy before failure," he said. "Mechanical testing at smaller scales via nanoindentation exhibited even more local enhancement, mainly due to the strong interaction between nanoribbons and the polymer. This, combined with the filling effect of the nanoribbon-polymer into the pore spaces of the sandstone, led to the observed enhancements."

The researchers suggested a low-power microwave attachment on the drill head would allow for in-well curing of the nanoribbon-polymer solution.

Facts, background information, dossiers
  • mica
  • gilsonite
More about Rice University
  • News

    Boron nitride destroys PFAS 'forever' chemicals PFOA, GenX

    Rice University chemical engineers found an efficient catalyst for destroying PFAS "forever" chemicals where they least expected. "It was the control," said Rice Professor Michael Wong, referring to the part of a scientific experiment where researchers don't expect surprises. The control gr ... more

    2D sandwich sees molecules with clarity

    A sandwich of molybdenum, sulfur and selenium turns out to be deliciously useful for detecting biomolecules. Tests at Rice University's Brown School of Engineering of a two-dimensional Janus compound showed it could be an effective and universal platform for improving the detection of biomo ... more

    Double-walled nanotubes have electro-optical advantages

    One nanotube could be great for electronics applications, but there's new evidence that two could be tops. Rice University engineers already knew that size matters when using single-walled carbon nanotubes for their electrical properties. But until now, nobody had studied how electrons act ... more