13-Jun-2018 - Harvard University

Making data matter

A multimaterial, voxel-printing method turns imaging datasets into physical objects

The world is awash in digital images, from photographs to x-rays to computer models to 3D scans. The advent of 3D printing has made it possible to take imaging data and print it into physical representations, but the process of doing so has been prohibitively time-intensive and costly.

A new data processing method developed through a joint collaboration between the Wyss Institute and the MIT Media Lab removes that roadblock by converting various different forms of complex 3D data into a stack of high resolution “dithered bitmaps” which preserves extremely fine details and material gradients present in the source files. The researchers hope that this “bridging of the gap between digital information representation and physical material composition” will help democratize 3D printing and eventually allow anyone to print an accurate, detailed, full-color 3D model of almost anything imaginable.

Facts, background information, dossiers
  • 3D printing
  • voxels
  • 3d imaging
More about Harvard University
  • News

    Harvard researchers use dyes to store data

    In the digital age, every byte of data needs to go somewhere — and preferably stay there a long time. That last part is a major problem when it comes to data-storage systems, which typically last less than 20 years. A group of Harvard chemists is trying to solve the issue with an innovation ... more

    Groundbreaking method to map the interaction between atomically thin layers

    When two atomically thin layers of a material are stacked and twisted slightly on top of one another, they can develop radically different properties. They may become superconducting or even develop magnetic or electronic properties due to the interaction of their two layers. The challenge ... more

    Ultracold mystery solved

    In a famous parable, three blind men encounter an elephant for the first time. Each touches a part--the trunk, ear, or side--and concludes the creature is a thick snake, fan, or wall. This elephant, said Kang-Kuen Ni, is like the quantum world. Scientists can only explore a cell of this vas ... more

  • Videos

    A diamond radio receiver

    Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences have made the world’s smallest radio receiver – built out of an assembly of atomic-scale defects in pink diamonds. This tiny radio — whose building blocks are the size of two atoms — can withstand extrem ... more

    A 3-D Material that Folds, Bends and Shrinks on its Own

    Harvard researchers have designed a new type of foldable material that is versatile, tunable and self actuated. It can change size, volume and shape; it can fold flat to withstand the weight of an elephant without breaking, and pop right back up to prepare for the next task. more

    New Polymers for Solar Power

    As part of the 2015–2016 Fellows’ Presentation Series at the Radcliffe Institute for Advanced Study, Scott T. Milner RI ’16 discusses current trends in solar power, how solar cells work, and how polymer-based materials may offer an attractive alternative to silicon. more