10-Dec-2018 - Ruhr-Universität Bochum RUB

How ice particles promote the formation of radicals

Chemistry in clouds

Certain molecules with fluorine, chlorine or bromine, together with water, can release harmful substances into the atmosphere.

The production of chlorofluorocarbons, which damage the ozone layer, has been banned as far as possible. However, other substances can also tear holes in the ozone layer in combination with ice particles, such as those found in clouds. Researchers at Ruhr-Universität Bochum, the University of Duisburg-Essen and Friedrich-Alexander-Universität Erlangen-Nürnberg have discovered a possible mechanism for this.

The work was part of a long-standing cooperation between the teams from Bochum, Duisburg-Essen, and Erlangen-Nuremberg led by Professor Karina Morgenstern, Dr. Cord Bertram, Professor Uwe Bovensiepen and Professor Michel Bockstedte, which is currently being continued within the framework of the cluster of excellence Ruhr Explores Solvation, or Resolv for short.

Organic molecules are deposited on ice particles

Chemical processes can significantly influence the weather, the climate and the composition of the atmosphere. Cosmic rays or UV light provide the energy to split chemical compounds. In the case of bromine, chlorine or fluorine compounds, radicals, i.e. particularly reactive molecules, are formed. These attack the ozone molecules and can trigger chain reactions in the ozone layer. An earlier laboratory study had shown that ice particles with a silver core can promote such reactions. The team investigated the mechanism behind this effect in the current study.

In the laboratory, the scientists produced tiny ice particles and analysed how certain compounds containing chlorine or bromine interacted with them. They condensed the ice particles onto copper. In nature, mineral dust particles, among other things, form condensation nuclei for the ice particles.

Using microscopic and spectroscopic methods, they observed that the molecules preferentially attached themselves to defects in the ice structure. The surrounding water molecules of the ice structure then reoriented themselves and hydrogenated the molecules. This, in turn, made it easier to ionise the molecules in the experiment.

UV radiation generates radicals

The researchers irradiated the ice crystals with the attached molecules using UV light, which excited electrons in the ice particles in the vicinity of the molecules. These excited electrons ionised the chlorine and bromobenzene molecules. Through ionisation, the molecules disintegrated into organic residues and highly reactive chlorine and bromine radicals.

“The mechanism could explain what happens when UV light hits mineral-contaminated ice,” says Cord Bertram. “Our results could thus help to understand the fundamental processes behind phenomena such as ozone holes.”

Facts, background information, dossiers
  • ozone hole
More about Ruhr-Universität Bochum
  • News

    How Confined Protons Migrate

    Protons in aqueous solution can usually migrate very quickly – much faster compared to other ions. However, this only applies when they are in a space greater than two nanometers, as a study from Ruhr University-Bochum and the University of California Berkeley shows. In confined spaces the ... more

    Step by step to the end product through enzyme catalysis

    The production of the sugar trehalose, which is used as a functional food and an additive in pharmaceutical products or in cosmetics, is a team effort for enzymes: One takes care of the construction of an energy-rich intermediate product (UDP-glucose), from which the second then makes treha ... more

    How cola still tingles after a year

    If polymers are specifically made to form and deposit on the surfaces surrounding the plasma, they can be coated in a targeted manner. Thanks to this so-called Plasma Enhanced Chemical Vapor Deposition, or PECVD for short, it is possible, for example, to apply ultra-thin, gas-tight coatings ... more

More about Uni Duisburg-Essen
  • News

    Artificial intelligence: Swarm learning decodes biomolecules

    They are often referred to as the "building blocks of life": Biomolecules. To understand and use their function in the body, one must know their structure. A complex and sometimes imprecise matter. This is where the new method developed at the University of Duisburg-Essen (UDE) together wit ... more

    Synthesis of Large-Area 2D Material

    Elbow mentality in a two-dimensional material: This has recently been discovered by an international team led by the Center for Nanointegration (CENIDE) at the University of Duisburg-Essen (UDE): The physicists succeeded in creating boron layers with a height of a single atom. While growing ... more

    Coated white pigment is catalytically active

    It is one of the softest white pigments used by the industry. However, zinc sulfide turns gray over time if it is not appropriately pretreated. Chemists under the leadership of the Center for Nanointegration (CENIDE) at the UDE discovered a way to retain its brilliant color and also enable ... more

More about Friedrich-Alexander-Universität Erlangen-Nürnberg