10-Dec-2018 - Ruhr-Universität Bochum (RUB)

How ice particles promote the formation of radicals

Chemistry in clouds

Certain molecules with fluorine, chlorine or bromine, together with water, can release harmful substances into the atmosphere.

The production of chlorofluorocarbons, which damage the ozone layer, has been banned as far as possible. However, other substances can also tear holes in the ozone layer in combination with ice particles, such as those found in clouds. Researchers at Ruhr-Universität Bochum, the University of Duisburg-Essen and Friedrich-Alexander-Universität Erlangen-Nürnberg have discovered a possible mechanism for this.

The work was part of a long-standing cooperation between the teams from Bochum, Duisburg-Essen, and Erlangen-Nuremberg led by Professor Karina Morgenstern, Dr. Cord Bertram, Professor Uwe Bovensiepen and Professor Michel Bockstedte, which is currently being continued within the framework of the cluster of excellence Ruhr Explores Solvation, or Resolv for short.

Organic molecules are deposited on ice particles

Chemical processes can significantly influence the weather, the climate and the composition of the atmosphere. Cosmic rays or UV light provide the energy to split chemical compounds. In the case of bromine, chlorine or fluorine compounds, radicals, i.e. particularly reactive molecules, are formed. These attack the ozone molecules and can trigger chain reactions in the ozone layer. An earlier laboratory study had shown that ice particles with a silver core can promote such reactions. The team investigated the mechanism behind this effect in the current study.

In the laboratory, the scientists produced tiny ice particles and analysed how certain compounds containing chlorine or bromine interacted with them. They condensed the ice particles onto copper. In nature, mineral dust particles, among other things, form condensation nuclei for the ice particles.

Using microscopic and spectroscopic methods, they observed that the molecules preferentially attached themselves to defects in the ice structure. The surrounding water molecules of the ice structure then reoriented themselves and hydrogenated the molecules. This, in turn, made it easier to ionise the molecules in the experiment.

UV radiation generates radicals

The researchers irradiated the ice crystals with the attached molecules using UV light, which excited electrons in the ice particles in the vicinity of the molecules. These excited electrons ionised the chlorine and bromobenzene molecules. Through ionisation, the molecules disintegrated into organic residues and highly reactive chlorine and bromine radicals.

“The mechanism could explain what happens when UV light hits mineral-contaminated ice,” says Cord Bertram. “Our results could thus help to understand the fundamental processes behind phenomena such as ozone holes.”

Facts, background information, dossiers
  • ozone hole
More about Ruhr-Universität Bochum
  • News

    Iodide salts stabilise biocatalysts for fuel cells

    Oxygen is the greatest enemy of biocatalysts for energy conversion. A protective film shields them – but only with an additional ingredient: iodide salt. Contrary to theoretical predictions, oxygen inactivates biocatalysts for energy conversion within a short time, even under a protective f ... more

    Catalyst deposition on fragile chips

    Electrocatalysts can help to obtain chemicals from renewable raw materials or to use alternative energy sources. But testing new catalysts brings challenges. Researchers at the Ruhr-Universität Bochum (RUB) and the University of Duisburg-Essen have developed a new method of depositing catal ... more

    Why artificial intelligence doesn’t really exist yet

    The processes underlying artificial intelligence today are in fact stupid. Researchers from Bochum are attempting to make them smarter. Radical change, revolution, megatrend, maybe even a risk: artificial intelligence has penetrated all industrial segments and keeps the media busy. Research ... more

More about Uni Duisburg-Essen
  • News

    Catalyst deposition on fragile chips

    Electrocatalysts can help to obtain chemicals from renewable raw materials or to use alternative energy sources. But testing new catalysts brings challenges. Researchers at the Ruhr-Universität Bochum (RUB) and the University of Duisburg-Essen have developed a new method of depositing catal ... more

    From 2D crystal to 1D wire

    No volume, not even a surface: a one-dimensional material is like a wire and has properties that are completely different to its 3D counterpart. Physicists at the University of Duisburg-Essen (UDE) have now discovered a system that, at warmer temperatures, forms self-organized wires consist ... more

    Self-organizing molecules: Nanorings with two sides

    The tiny rings that chemists at the Center for Nanointegration (CENIDE) at the University of Duisburg-Essen (UDE) create in the laboratory are as small as a bacterium. Self-organized, individual polymer chains form the flexible structures that can even squeeze themselves through cell membra ... more

More about Friedrich-Alexander-Universität Erlangen-Nürnberg
  • News

    Removing glyphosate from water

    Glyphosate is not only one of the most widely-used herbicides in the world, but also one of the most controversial chemical compounds, as it is suspected of being carcinogenic. In a study published in the journal Nature Sustainability, a team of researchers from FAU have demonstrated how gl ... more

    Coming a step closer to the dream of nanotechnology

    Synthesising single-wall carbon nanotubes (SWCNTs) is one of the greatest challenges faced by materials science. They can be synthesised using precursor molecules, so-called seeds, which determine growth. However, this synthesis has not been well researched up to now. Researchers at FAU hav ... more

    Zips on the nanoscale

    Nanostructures based on carbon are promising materials for nanoelectronics. However, to be suitable, they would often need to be formed on non-metallic surfaces, which has been a challenge – up to now. Researchers at FAU have found a method of forming nanographenes on metal oxide surfaces. ... more