My watch list
my.chemeurope.com  
Login  

Self-repairing batteries

A way to create high-capacity long-life batteries

21-May-2019

© 2019 Atsuo Yamada

Self-repairing batteries would have longer lifetimes than batteries at present.

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a material which could significantly extend the life of batteries and afford them higher capacities as well.

From smartphones to pacemakers and now even cars, batteries power much of our world and their importance only continues to grow. There are two particular aspects of batteries that many believe need to improve to meet our future needs. These are the longevity of the battery and also its capacity - how much charge it can store.

The chances are your devices use a type of battery called a lithium-ion battery. But another kind based on sodium rather than lithium may become commonplace soon. Both kinds of battery can store and deliver a large amount of charge, thanks to the way constituent materials pass electrons around. But in both lithium and in sodium batteries, repeated cycles of charging and usage can significantly reduce the storage capacity over time.

If you could see inside a typical battery, you would see layers of metallic material. As batteries charge and discharge, these layers degrade and develop cracks or flakes - called stacking faults - which reduce the batteries' ability to store and deliver charge. These stacking faults occur because the material is held together by a weak force called the Van der Waals force, which is easily overwhelmed by the stress put on the materials during charging and use.

Yamada and colleagues demonstrated that if the battery is made with a model material - oxygen redox-layered oxide (Na2RuO3) - then something remarkable happens. Not only does the degradation from charge and discharge cycles diminish, but the layers actually self-repair. This is because the material the researchers demonstrated is held fast by a force called coulombic attraction, which is far stronger than the Van der Waals force.

"This means batteries could have far longer life spans, but also they could be pushed beyond levels that currently damage them," said Yamada. "Increasing the energy density of batteries is of paramount importance to realize electrified transportation."

Facts, background information, dossiers
More about University of Tokyo
  • News

    Simplified synthesis

    For the first time researchers discovered a simple and highly efficient way to produce certain kinds of organic compounds. The team from the Department of Chemistry at the University of Tokyo report their new method - which uses a novel iron catalyst - can not only simplify organic synthesi ... more

    'Butterfly-shaped' palladium subnano cluster built in 3-D

    Miniaturization is the watchword of progress. Nanoscience - building structures on the scale of a few atoms - has long been at the forefront of chemistry for some time now. Recently, researchers at The University of Tokyo developed the new strategy to construct the subnanosized metal aggreg ... more

    Chemical synthesis of nanotubes

    For the first time, researchers used benzene - a common hydrocarbon - to create a novel kind of molecular nanotube, which could lead to new nanocarbon-based semiconductor applications. Researchers from the Department of Chemistry have been hard at work in their recently renovated lab in the ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE