My watch list
my.chemeurope.com  
Login  

Spin-off develops magnetic cooling system for extremely low temperatures

Cooling for quantum electronics

11-Jun-2019

W. Schürmann / TUM

Alexander Regnat, Prof. Christian Pfleiderer, Jan Spallek and Tomek Schulz with their cooling system for extremely low temperatures.

The start-up kiutra is the first company in the world to have succeeded in developing a permanent magnetic cooling system to reach temperatures close to absolute zero. Such temperatures are, for example, required for the operation of quantum computers. The system was set up by a team of researchers from the Physics Department at the Technical University of Munich (TUM).

Low temperatures are essential for basic research in the field of quantum physics. More and more technologies based on quantum mechanics are now also making the leap from the laboratory to commercial applications.

High-sensitivity detectors and quantum computers are two well-known examples. However, very low temperatures close to absolute zero (around -273°C) are generally required for the operation of sensitive quantum technology. Demand for effective cooling solutions is therefore rapidly growing.

TUM researchers Alexander Regnat, Jan Spallek, Tomek Schulz and Prof. Christian Pfleiderer are seeking to meet that demand. All four are currently working on their prototype at the TUM Physics Department. According to Alexander Regnat, there is already the prospect of taking on more staff and setting up separate headquarters.

The team of scientist came up with the idea during their work at the TUM. Again and again, they were faced with the limits of conventional methods for reaching such low temperatures. The group therefore developed its own technology to ensure permanent cooling and founded kiutra GmbH in the summer of 2018.

Magnetic cooling

Liquefied gases are usually used to generate very low temperatures. Where constant temperatures close to absolute zero are needed, the extremely rare and expensive isotope helium-3 has to date been used. There are magnetic cooling processes, which can generate the requisite temperatures using inexpensive solids – but usually only for a limited period of time.

Concepts for permanent magnetic cooling have been around for many years. "However, technical implementation is extremely challenging and this has previously prevented the development of a product for widespread use," explains Tomek Schulz.

"We are the world's first commercial supplier of a cooling system that can magnetically achieve temperatures close to absolute zero ( near -273°C) on a permanent basis," says Alexander Regnat. "Our great advantage is that we do not need expensive helium-3. All we need is electricity."

Facts, background information, dossiers
  • magnetic cooling
  • quantum electronics
  • cooling
More about kiutra
  • Companies

    kiutra GmbH

    kiutra builds easy-access turn-key refrigeration solutions. Our all-electrical cooling devices combine magnetic refrigeration and closed-cycle pre-cooling to provide cryogenic temperatures cryogen-free and conveniently. Cryogenic temperatures are a key prerequisite for research and develop ... more

More about TU München
  • News

    Light in the nanoworld

    An international team headed up by Alexander Holleitner and Jonathan Finley, physicists at the Technical University of Munich (TUM), has succeeded in placing light sources in atomically thin material layers with an accuracy of just a few nanometers. The new method allows for a multitude of ... more

    Artificial neural network resolves puzzles from condensed matter physics

    For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial n ... more

    Activity of fuel cell catalysts doubled

    An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today. Fuel cells may well replace batteries as the powe ... more

  • Videos

    Scientists pair up two stars from the world of chemistry

    Many scientists consider graphene to be a wonder material. Now, a team of researchers at the Technical University of Munich (TUM) has succeeded in linking graphene with another important chemical group, the porphyrins. These new hybrid structures could also be used in the field of molecular ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE