01-Jul-2019 - Universität Bayreuth

High pressure creates new neighbours for beryllium

Researchers discover unusual crystal structures

The rare element beryllium is mainly known for being a component of emeralds, aquamarines, and other precious stones. However, in "Nature Communications", an international team of scientists from the University of Bayreuth now reports on a very unusual discovery: Under a pressure 880,000 times higher than the pressure of the Earth's atmosphere, beryllium atoms in a phosphate crystal surround themselves with six neighbouring atoms instead of the usual four. Actually, this crystal structure was theoretically predicted five decades ago, but it was only during high-pressure experiments at the Deutsches Elektronensynchrotron (DESY) in Hamburg that it has now been observed for the first time.

Prof. Dr. Leonid Dubrovinsky and Dr. Maxim Bykov from the Bavarian Geo Institute were involved in the research work on the part of the University of Bayreuth, as were Georgios Aprilis and Dr. Anna Pakhomova from the Working Group for Material Physics and Technology under Extreme Conditions in the Laboratory for Crystallography.

Originally, science considered it impossible for beryllium atoms in crystals to have more than four neighbouring atoms. This seemed to be incompatible with the crystal-chemical laws for a long time. "But about 50 years ago, theorists suggested that higher co-ordinations might actually be possible, even though these have stubbornly eluded experimental confirmation in inorganic compounds ever since," reports Dr. Anna Pakhomova, a beamline scientist at DESY and post-doctoral researcher preparing a habilitation thesis at Bayreuth University.

High-pressure experiments at DESY's X-ray light source PETRA III have made empirical proof possible for the first time. The researchers examined samples of the phosphate crystal hurlbutite, a rare mineral consisting of calcium, beryllium, phosphorus and oxygen (CaBe2P2O8), which occurs naturally on the earth's surface. Under normal environmental conditions, each beryllium atom only has four oxygen atoms as neighbours. At 700,000 times atmospheric pressure, however, the crystal structure changes so fundamentally that beryllium atoms gain a fifth neighbour. Meanwhile, an atmospheric pressure 880,000 times that at sea-level generates new structural changes that give rise to even a sixth neighbour.

"Although there are currently no technological applications for the new crystals, they are broadening the horizons of materials science. They show us that no irrevocable chemical certainties can be derived from normal conditions on the earth's surface. Extreme conditions and rare phenomena, which we can only create and observe in the laboratory using sophisticated technology, are actually normal in many places in the universe", says Prof. Dr. Leonid Dubrovinsky.

Facts, background information, dossiers
  • beryllium
  • crystal structures
  • atoms
More about Uni Bayreuth
  • News

    Nitrogen – an exception in the periodic system?

    In the periodic table of elements there is one golden rule for carbon, oxygen, and other light elements. Under high pressures they have similar structures to heavier elements in the same group of elements. Only nitrogen always seemed unwilling to toe the line. However, high-pressure researc ... more

    On our way to the bio-economy: High-performance biocatalyst discovered

    In the bioeconomy, biotechnological processes are replacing processes that rely on fossil resources. Microorganisms and enzymes are being used in targeted fashion as biocatalysts for industrial production. Researchers at the University of Bayreuth have now discovered an enzyme that offers g ... more

    Nitrogen compounds with surprising structures discovered

    Nitrides are nitrogen compounds with technologically highly attractive properties. They therefore have the potential for widespread application in microelectronics, optoelectronics, and as ceramic materials. Researchers at the University of Bayreuth have now discovered unusual nitrides in h ... more