My watch list
my.chemeurope.com  
Login  

Ultracold Quantum Particles Break Classical Symmetry

13-Aug-2019

Enss

An expanding cloud of quantum particles violates the scaling symmetry.

Many phenomena of the natural world evidence symmetries in their dynamic evolution which help researchers to better understand a system’s inner mechanism. In quantum physics, however, these symmetries are not always achieved. In laboratory experiments with ultracold lithium atoms, researchers from the Center for Quantum Dynamics at Heidelberg University have proven for the first time the theoretically predicted deviation from classical symmetry.

“In the world of classical physics, the energy of an ideal gas rises proportionally with the pressure applied. This is a direct consequence of scale symmetry, and the same relation is true in every scale invariant system. In the world of quantum mechanics, however, the interactions between the quantum particles can become so strong that this classical scale symmetry no longer applies”, explains Associate Professor Dr Tilman Enss from the Institute for Theoretical Physics. His research group collaborated with Professor Dr Selim Jochim’s group at the Institute for Physics.

In their experiments, the researchers studied the behaviour of an ultracold, superfluid gas of lithium atoms. When the gas is moved out of its equilibrium state, it starts to repeatedly expand and contract in a “breathing” motion. Unlike classical particles, these quantum particles can bind into pairs and, as a result, the superfluid becomes stiffer the more it is compressed. The group headed by primary authors Dr Puneet Murthy and Dr Nicolo Defenu – colleagues of Prof. Jochim and Dr Enss – observed this deviation from classical scale symmetry and thereby directly verified the quantum nature of this system. The researchers report that this effect gives a better insight into the behaviour of systems with similar properties such as graphene or superconductors, which have no electrical resistance when they are cooled below a certain critical temperature.

Facts, background information, dossiers
More about Ruprecht-Karls-Universität Heidelberg
  • News

    Mapping the Energetic Landscape of Solar Cells

    A new spectroscopic method now makes it possible to measure and visualise the energetic landscape inside solar cells based on organic materials. It was developed by a research team led by Prof. Dr Yana Vaynzof, a physicist at Heidelberg University. This novel visualisation technique enables ... more

    Successful research at catalysis laboratory

    BASF and the University of Heidelberg will jointly continue operating their Catalysis Research Laboratory (CaRLa) for a further three years. The partners signed the appropriate contract to extend the research cooperation until 2022. At CaRLa, researchers work on issues relating to homogeneo ... more

    New Measurement Device: Carbon Dioxide As Geothermometer

    For the first time it is possible to measure, simultaneously and with extreme precision, four rare molecular variants of carbon dioxide (CO2) using a novel laser instrument. It is thus able to measure the temperature during the formation of CO2-binding carbonates and carbonaceous fossils co ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE