07-Aug-2020 - Martin-Luther-Universität Halle-Wittenberg (MLU)

Researchers show how to make non-magnetic materials magnetic

A complex process can modify non-magnetic oxide materials in such a way to make them magnetic. The basis for this new phenomenon is controlled layer-by-layer growth of each material. An international research team with researchers from Martin Luther University Halle-Wittenberg (MLU) reported on their unexpected findings in the journal "Nature Communications".

In solid-state physics, oxide layers only a few nanometres thick are known to form a so-called two-dimensional electron gas. These thin layers, separated from one another, are transparent and electrically insulating materials. However, when one thin layer grows on top of the other, a conductive area forms under certain conditions at the interface, which has a metallic shine. "Normally this system remains non-magnetic," says Professor Ingrid Mertig from the Institute of Physics at MLU. The research team has succeeded in controlling conditions during layer growth so that vacancies are created in the atomic layers near the interface. These are later filled in by other atoms from adjoining atomic layers.

The theoretical calculations and explanations for this newly discovered phenomenon were made by Ingrid Mertig’s team of physicists. The method was then experimentally tested by several research groups throughout Europe - including a group led by Professor Kathrin Dörr from MLU. They were able to prove the magnetism in the materials. "This combination of computer simulations and experiments enabled us to decipher the complex mechanism responsible for the development of magnetism," explains Mertig.

Facts, background information, dossiers
  • magnetic materials
  • magnetisms
More about MLU
  • News

    Breakthrough in the synthesis of graphene nanoribbons

    An international research team led by Martin Luther University Halle-Wittenberg (MLU), the University of Tennessee and Oak Ridge National Laboratory in the U.S. has succeeded in producing this versatile material for the first time directly on the surface of semiconductors. Until now, this w ... more

    Chemists are able to induce uniform chirality

    Chirality is a fundamental property of many organic molecules and means that chemical compounds can appear in not only one form, but in two mirror-image forms as well. Chemists at Martin Luther University Halle-Wittenberg have now found a way to spontaneously induce chirality in crystalline ... more

    Electrolysis: How to produce better electrodes

    By applying an unusual process step, chemists at Martin Luther University Halle-Wittenberg (MLU) have found a way to treat inexpensive electrode materials and considerably improve their properties during electrolysis. Hydrogen is thought to be the solution to the storage problem of renewab ... more