05-Jan-2021 - Westfälische Wilhelms-Universität Münster (WWU)

Innovative Battery Chemistry Revolutionises Zinc-Air Battery

International Research Cooperation for Sustainable Batteries of the Future

High-performance, eco-friendly, safe and at the same time cost-effective: the zinc-air battery is an attractive energy storage technology of the future. Until now, the conventional zinc-air battery has struggled with a high chemical instability, parasitic reactions which rooted in the usage of alkaline electrolytes lead to electrochemical irreversibility. Based on an innovative, non-alkaline, aqueous electrolyte, an international research team led by scientist Dr. Wei Sun of MEET Battery Research Center at the University of Muenster has developed a new battery chemistry for the zinc-air battery which overcomes the previous technical obstacles. The scientific team has published the detailed results of their research project, involving researchers from Fudan University in Shanghai, the University of Science and Technology in Wuhan, the University of Maryland and the US Army Research Laboratory, in the journal "Science".

Key parameters of the zinc-air battery optimised

"Our innovative, non-alkaline electrolyte brings a previously unknown reversible zinc peroxide (ZnO2)/O2 chemistry into the zinc-air battery”, explains Dr. Wei Sun. Compared with the conventionally strong alkaline electrolytes, the newly developed non-alkaline aqueous electrolyte, which is based on the zinc trifluoromethanesulfonate salt, has several decisive advantages: The zinc anode is used more efficiently with a higher chemical stability and electrochemical reversibility. The full zinc-air batteries thus constructed can long-term operate stably for 320 cycles and 1,600 hours under ambient air atmosphere.

The mechanism of this ZnO2/O2 battery chemistry and the role of the hydrophobic trifluoromethanesulfonate anion were systematically revealed using well-designed electrochemical, analytical techniques and multiscale simulations. The identified increased energy density has now the potential to compete with the lithium-ion battery currently dominating the market. “The zinc-air battery provides a potential alternative battery technology with advantages such as environmental friendliness, high safety and low costs”, emphasises Sun. “This technology still requires further, intensive research and optimisation before its practical application.”

Facts, background information, dossiers
More about WWU Münster
  • News

    Breakthrough in the production of three-dimensional molecular structures

    A major goal of organic and medicinal chemistry in recent decades has been the rapid synthesis of three-dimensional molecules for the development of new drugs. These drug candidates exhibit a variety of improved properties compared to predominantly flat molecular structures, which are refle ... more

    Researchers first to link silicon atoms on surfaces

    A team consisting of various working groups from the fields of chemistry and physics are now the first to have linked silicon atoms on surfaces. From silicon polymers, the researchers hope for innovative material properties and new, promising candidates for potential applications. Materials ... more

    Light-carrying chips advance machine learning

    In the digital age, data traffic is growing at an exponential rate. The demands on computing power for applications in artificial intelligence such as pattern and speech recognition in particular, or for self-driving vehicles, often exceeds the capacities of conventional computer processors ... more