15-Jan-2021 - Technische Universität Hamburg (TUHH)

As hard as a diamond and as deformable as metal

Scientists develop new material for tomorrow's technology

Smartphones with large glass housings and displays are impressive, but they are also very prone to get cracked and scratched. To prevent these kinds of damages, a material combining the hardness of diamond and the deformability of metals would be ideal – and is indeed considered the holy grail of structural materials. Professor Gerold Schneider of the Hamburg University of Technology and other Hamburg materials researchers, together with colleagues in Berkeley, California, have now developed a hybrid material, a so-called supercrystal, that comes closer to achieving this goal.

Such a material has the potential to make technology in areas such as electronics, photonics and energy storage more robust and cost-effective.

Deformable material made of nanoparticles

In collaboration with colleagues from the Helmholtz-Zentrum Geesthacht and the University of California, Berkeley, the research team led by Professor Gerold Schneider has discovered that nanoparticles can be arranged like atoms in a three-dimensional, periodic lattice, and adhere to each other with the help of ultra-thin layers of fatty acids. Since the nanoparticles are made of hard iron oxide, a type of rust, and the bonding layer is made of liquid oleic acid, the supercrystal is both hard and at the same time easy to deform, together with completely environmentally compatible. Perfect for surfaces subject to heavy wear.

New material concept

"Plastic deformation of materials such as copper, aluminum or steel has long been known in research. The fact that this mechanical behavior can also be transferred to high-strength supercrystals is completely new," explains Diletta Giuntini, a research associate at TU Hamburg and now an assistant professor at the Eindhoven University of Technology. "As part of our work, we have gained valuable knowledge about how to control the mechanical properties and deformability of supercrystals. In the next steps, we want to fine-tune their individual components and the interactions among them, and perfect these hybrid materials for a diverse set of applications," she continued.

Facts, background information, dossiers
More about TU Hamburg
  • News

    Industrial consortium on the way to green kerosene

    A funding application for the construction of an industrial demonstration plant has been agreed by a partnership of major companies as part of a memorandum of understanding entitled “GreenPower2Jet” (GP2J). The aim of the project, after successful pre-engineering, is to build an industrial- ... more

    Liquid crystals form nano rings

    At DESY's X-ray source PETRA III, scientists have investigated an intriguing form of self-assembly in liquid crystals: When the liquid crystals are filled into cylindrical nanopores and heated, their molecules form ordered rings as they cool – a condition that otherwise does not naturally o ... more

    Unravelled with innovative experiments: Why tiny metallic structures are extremely strong

    Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced reliability and for energy-efficient automobiles. The origin of the exceptional properties of the tiny metallic bodies remains to be ... more

More about UC Berkeley
  • News

    How Confined Protons Migrate

    Protons in aqueous solution can usually migrate very quickly – much faster compared to other ions. However, this only applies when they are in a space greater than two nanometers, as a study from Ruhr University-Bochum and the University of California Berkeley shows. In confined spaces the ... more

    At Last: Separated and Freshly Bound

    The carbon–hydrogen bonds in alkanes—particularly those at the ends of the molecules, where each carbon has three hydrogen atoms bound to it—are very hard to “crack” if you want to replace the hydrogen atoms with other atoms. Methane (CH4) and ethane (CH3CH3) are made up, exclusively, of su ... more

    Making the invisible visible

    Researchers from Friedrich Schiller University Jena, the University of California Berkeley and the Institut Polytechnique de Paris use intense laser light in the extreme ultraviolet spectrum to generate a non-linear optical process on a laboratory scale – a process which until now has only ... more