19-Jan-2021 - East China University of Science and Technology

Purely Organic Hole Transporter

Dopant-free, humidity-stable organic layers give perovskite solar cells 21% efficiency

Durable, high-performing perovskite solar cells also require durable, high-performing charge-transporting layers. Scientists have developed the first organic hole transporter that does not need a dopant to attain high charge mobility and stability. According to the study published in the journal Angewandte Chemie, this novel hole-transporting layer outperforms reference materials and protects the perovskite organic cell from air humidity.

In perovskite solar cells, the perovskite light absorption layer is sandwiched between two charge-transporting layers, which collect the generated holes and electrons and transport them to the electrodes. These charge transportation layers boost the power conversion efficiency of the cells and are critical for maintaining air stability.

State-of-the-art hole transporters consist of an organic material called spiro-OMeTAD. However, to promote smooth charge-carrier mobility, they need hygroscopic additives as dopants, which reduce the stability of the perovskites in humid air.

Yongzhen Wu and colleagues from the East China University of Science and Technology are exploring flat, aromatic, nitrogen-containing compounds called quinoxalines as hole transporters. The scientists prepared two novel quinoxalines that contained additional sulfur-bearing entities called thiophenes. The idea was that the energy levels of the thiophene-containing structures matched those of the perovskite layer and enabled efficient hole extraction.

In one of the quinoxalines, the thiophenes were able to rotate more or less freely, while in the other one, the thiophenes were fused and could not rotate. Both quinoxalines formed thin, crystalline films, which were good hole extractors, but only those with the fused thiophene rings also formed well-stacked crystalline layers.

The scientists observed over 21 % power conversion efficiency for perovskite solar cells containing the novel hole-transporting material. These cells outperformed reference cells containing the doped spiro-OMeTAD.

The authors also found that the devices made with the new material were more durable than those containing the doped reference materials. The dopant-free devices “maintained a dark and uniform shiny appearance within 30 days,” the scientists wrote, whereas the doped spiro-OMeTAD-containing devices “apparently faded”.

The quinoxaline-containing perovskite solar cells also resisted humid air, whereas the performance of the reference cells declined fast. The researchers concluded that the novel material not only enables, hole extraction and transportation, but it also protects the perovskite-based solar cell from moisture.

Facts, background information, dossiers
More about East Chna University of Science and Technology
  • News

    Tracking structural regeneration of catalysts for electrochemical CO2 reduction

    Recent years have witnessed explosive development in electrochemical CO2 reduction into valuable chemicals or fuels. The CO2 electroreduction is considered as a promising route to utilize renewable electricity from intermittent energy, such as solar, winder, geothermal power, etc. Designing ... more

    Water could modulate the activity and selectivity of CO2 reduction

    As an alternative to the depletion of fossil resources, the reduction of CO2 emitted from fossil fuel combustion into valuable chemicals and fuel has drawn increasing attention. Due to the highly thermodynamic stability of CO2, it is still very challenging to find a sustainable and cost-eff ... more

    Pores with a Memory

    Whether for separation processes, photovoltaics, catalysis, or electronics, porous polymer membranes are needed in many fields. Membranes with micropores that switch between different shapes and/or sizes would expand the possibilities. Scientists have introduced a process that produces poro ... more

More about Angewandte Chemie
  • News

    Degradable sugar-based polymers may store and release useful molecular freight

    Degradable, bio-based polymers offer options for chemical recycling, and they can be a tool to store and release useful molecules. Scientists have developed a class of sugar-based polymers that are degradable through acid hydrolysis. The researchers also integrated “cargo” molecules in the ... more

    Inverted Fluorescence

    Fluorescence usually entails the conversion of light at shorter wavelengths to light at longer wavelengths. Scientists have now discovered a chromophore system that goes the other way around. When excited by visible light, the fluorescent dyes emit light in the ultraviolet region. According ... more

    Anions Matter

    Metal-ion hybrid capacitors combine the properties of capacitors and batteries. One electrode uses the capacitive mechanism, the other the battery-type redox processes. Scientists have now scrutinized the role of anions in the electrolyte. The results, which have been published in the journ ... more