27-Jan-2021 - Fraunhofer-Institut für System- und Innovationsforschung (ISI)

When will graphene-based applications be available on the mass market?

What happened to the promised applications of graphene and related materials? Thanks to initiatives like the European Union’s Graphene Flagship and heavy investments by leading industries, graphene manufacturing is mature enough to produce prototypes and some real-life niche applications. Now, researchers at Graphene Flagship partner The Fraunhofer Institute for Systems and Innovation Research (ISI) in Karlsruhe, Germany, have published two papers that roadmap the expected future mass introduction of graphene and related materials in the market.

Discovery of thousands of layered materials

Back in 2004, graphene was made by peeling off atomically thin layers from a graphite block. Now, thanks to the advances pioneered by the Graphene Flagship, among others, we can produce high quantities of graphene with a reliable and reproducible quality. Furthermore, the Graphene Flagship has driven the discovery of thousands of layered materials, complementary to graphene in properties and applications, and has spearheaded efforts to standardise the fabrication of graphene to ensure consistency and trustworthiness.

The new publications by Graphene Flagship researchers at Fraunhofer ISI, just issued by IOP Publishing’s journal 2D Materials, review the latest outcomes of the Technology and Innovation Roadmap, a process that explores the different pathways towards industrialisation and commercialisation of graphene and related materials. In particular, these articles summarise the impact that graphene and related materials will have transforming the manufacturing process and triggering the emergence of new value chains.

Graphene-based applications are already commercially available

“Our final goal is seeing graphene and related materials fully integrated in day-to-day products and manufacturing,” says Dr. Henning Döscher from Graphene Flagship partner Fraunhofer ISI, who leads the Graphene Flagship Roadmap Team. “We are continuously analysing scientific and technological advances in the field as well as their capacity to fulfil future industrial needs. Our first Graphene Roadmap Brief articles summarise some of the most exciting results,” he adds. “Graphene and related materials add value throughout the value chain, from enhancing and enabling new materials to improving individual components and, eventually, end products.” The most immediate applications of graphene, such as composites, inks and coatings are already commercially available, as highlighted by the Graphene Flagship product gallery. The industry will soon be ready to absorb and implement the latest innovations and start manufacturing batteries, solar panels, electronics, photonic and communication devices and medical technologies.

“The market demand for graphene has almost quadrupled in the last two years,” explains Dr. Thomas Reiss from Graphene Flagship partner Fraunhofer ISI, and co-leader of the roadmap endeavour. “By strengthening standards and creating tailored high-quality materials, we expect to go beyond niche products and applications to broad market penetration by 2025,” he adds. “Then, graphene could be incorporated in ubiquitous commodities such as tyres, batteries and electronics.”

Europe needs to stay a leader in the field

The dawning decade seems decisive in the road to market of graphene and related materials. “By 2030 we will see if graphene is really as disruptive as silicon or steel,” says Döscher. “The Graphene Flagship has already shown that graphene is useful for numerous applications,” he adds. “Now, we need to ensure that Europe stays a leader in the field, to ensure we benefit from the economic and societal impact of developing such an innovation.”

Alexander Tzalenchuk, Graphene Flagship Leader for Industrialisation, says: “The publication of the Graphene Flagship Roadmap Briefs is a timely and welcome development for industries innovating with graphene and related materials. Improving trust and confidence in graphene-enabled products is a key prerequisite for industrial uptake. Informed by the market analysis and technology assessment of the Graphene Flagship Roadmap, this further contributes to our agenda providing expert validation of the characteristics of graphene and related materials, graphene-enhanced components, devices and systems, by developing consensus-based and accepted international standards.”

Kari Hjelt, Head of Innovation of the Graphene Flagship, adds: “We see a strong increased interest in graphene by several branches of industry as witnessed by the eleven Spearhead Projects of the Graphene Flagship, all led by industry partners. The first mass applications pave the way to emerging high value-added areas in electronics and biomedical applications. In the near future, we will start to witness the transformative power of graphene in many industries. The updates from the Technology and Innovation Roadmap team sheds light on the road ahead for both research and industrial communities alike.”

Facts, background information, dossiers
More about Fraunhofer-Institut ISI
  • News

    Deep decarbonization of industry is possible with innovations

    On behalf of the EU Commission, Fraunhofer ISI explored what contribution individual technologies can make to decarbonizing industry and how to support them. The study shows that it is possible to cut emissions by 95% by 2050. However, this requires innovative carbon-neutral technologies an ... more

More about Fraunhofer-Gesellschaft
  • News

    Microcapsules enable self-lubricating plastics

    23 percent of global energy consumption can be attributed to friction losses. Components with reduced friction therefore represent an important contribution to conserving resources and achieving climate protection targets. In the case of plastics, reduced friction can also reduce microplast ... more

    Vegetable proteins replace petroleum-based raw materials

    Just like cellulose, lignin and fats, proteins are renewable raw materials. Their potential for the chemical industry remains largely untapped. Research teams at the Fraunhofer Institute for Process Engineering and Packaging IVV are collaborating with partners to change all this, the idea b ... more

    Microreactor for synthesis with Grignard reagents

    In 1912, Victor Grignard was awarded the Nobel Prize in Chemistry for his discovery of what came to be known as Grignard reagents. Since then, these compounds have come to play a key role in the chemical and pharmaceutical industries. Now, in a development by Fraunhofer researchers, a new t ... more