06-Nov-2013 - Universität Stuttgart

Growing gallium nitride crystals

Gallium nitride (GaN) is an important material for the semiconductor industry. It features a wide band gap and high thermal conductivity at room temperature, which make it a good material for optoelectronic devices and high-performance radio-frequency microdevices. In the European Journal of Inorganic Chemistry, Rainer Niewa and co-workers at the University of Stuttgart and Ludwig Maximilians University of Munich, Germany, report the existence of ammoniates of gallium halides in the ammonothermal growth of GaN and provide a rigorous characterization of these compounds.

High-quality GaN single crystals are difficult to obtain. The ammonothermal growth technology, which is analogous to the hydrothermal method but uses supercritical ammonia instead of water, is a promising method to grow the best quality GaN crystals. To obtain soluble Ga species, typically ammonium halides or alkali metal amides are added to the reaction mixture. However, the chemistry involved in the crystal growth process is not well understood. Rainer Niewa et al. provide the first comprehensive information on the gallium-containing ionic species likely to predominate in the reaction mixtures used to prepare GaN by using ammonium halides as additive. They elucidate the crystal structures of ammoniates of gallium halides that are highly soluble in supercritical ammonia.

Knowing the solid-state structures of these species, the number of coordinated ammonia and halide ligands, and the conditions under which these compounds form and decompose is a great aid in predicting the mechanisms of the ammonothermal growth of GaN crystals.

Facts, background information, dossiers
  • Universität Stuttgart
  • Hochschule München
More about Uni Stuttgart
More about LMU
  • News

    Battery research: Finding the right blend!

    In the battery of the future, solids will replace the currently used electrolyte solutions. A team of scientists at LMU has now developed a series of new sodium ion conductors. The secret of the best material in the series lies in the exact mixing of the ingredients. The days of conventiona ... more

    Putting a nanomachine to work

    A team of chemists at LMU has successfully coupled the directed motion of a light-activated molecular motor to a different chemical unit – thus taking an important step toward the realization of synthetic nanomachines. Molecular motors are chemical compounds that convert energy into directe ... more

    Man versus machine: Can AI do science?

    Over the last few decades, machine learning has revolutionized many sectors of society, with machines learning to drive cars, identify tumors and play chess - often surpassing their human counterparts. Now, a team of scientists based at the Okinawa Institute of Science and Technology Gradua ... more

More about Wiley-VCH
  • News

    Chemical hydrogen storage system

    Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems. Scientists at the Weizmann Institute of Science, Israel, have now developed a chemical storage system based on simple and abundant ... more

    For a Better Contrast

    Magnetic resonance imaging (MRI) has emerged as one of the most powerful clinical imaging tools because of its superb spatial resolution and soft tissue contrast, especially when using contrast agents. In the European Journal of Inorganic Chemistry, scientists have presented a new kind of n ... more

    A Successful Coupling

    Coupled oxygen transfer and electron transfer reactions that use cofactors are enzymatic reactions of crucial significance to all lifeforms from bacteria to vertebrates. In the European Journal of Inorganic Chemistry, scientists have introduced a model for the enzyme sulfite oxidase. It is ... more

  • Companies

    Wiley-VCH Verlag GmbH & Co. KGaA

    Wiley-VCH publishes monographs, textbooks, major references works and journals in print or online. Wiley-VCH can look back on over 80 years of publishing in chemistry, materials sciences, physics and the life sciences. more