05-Dec-2013 - University of Picardie Jules Verne

Using bacteria to make electrodes

Scientists in France have produced hematite using a bacterial pathway for use as an electrode material in Li-ion technologies.

Currently, most commercial electrode materials for Li-ion technologies are prepared using the ceramic method, which requires long heating periods at high temperatures (over 400 oC).

The research team, from across France, investigated an alternative preparation method, based on bacterial synthesis. They used a bacterium to produce an iron oxyhydroxide, lepidocrocite (γ-FeOOH), which is synthesised within the bacterium membrane. The lepidocrocite-made wall is then transformed into hematite by heating at 700 oC for one hour. This process eliminates the bacteria to leave a hematite powder compose of multiple, hollow, micro-sized, rod-like shells that have retained the shape and characteristics of the bacteria’s periplasms, which the researchers describe as ‘bacteriomorphs.’

Hematite is very good at storing electric charge (1000mA/g), making it a good material for electrodes. The researchers compared the conductivity of the hematite bacteriomorphs with un-textured hematite (crushed to destroy the bacteriomorph structure) and abiotic hematite (synthesised in the standard way, not using bacteria) and found that, after ten charge-discharge cycles at a slow speed, 91% of the initial charge storage capability was retained. This was considerably better than the other hematites, which retained only 18% (abiotic) and 8% (un-textured) of their initial charge storage capability. The researchers hypothesise that the improved performance of the bacteriomorphs is explained by their unique structure, which confers better mechanical stability to the electrode, and better contact with the electrolyte due to their porosity.

Facts, background information, dossiers
  • bacteria
  • porosity
  • Université de Picar…
More about Royal Society of Chemistry
  • News

    New coating is self-defence for seeds

    Scientists in Switzerland have developed a protective coating for seeds that poisons pests with cyanide when they bite into it. The coating is a system of two layers and only becomes toxic when the layers are mixed, eliminating the problem of environmental contamination that is associated w ... more

    Marine plant replacement for platinum in solar cells

    An international research team has shown that that the power conversion efficiency of sea tangle extract is comparable to platinum in solar cell electrodes. Dye-sensitized solar cells (DSCs) are quickly becoming a widespread and affordable alternative to photovoltaic solar cells. The electr ... more

    A jelly-based fuel cell

    An international team of researchers has used gelatin as their starting material to make a fuel cell catalyst. The team used gelatin to make doped-carbon electrocatalysts that could be a potential replacement for platinum in fuel cells. To make the catalyst, they mixed iron and magnesium in ... more

  • Videos

    Royal Society of Chemistry – About us

    With more than 51,000 members and an international publishing and knowledge business we are the UK’s professional body for chemical scientists, supporting and representing our members and bringing together chemical scientists from all over the world. more

    A career in toxicology

    Hear from RSC member Vicki Stone talk about her role as a Nanotoxicologist. more

    When Food met Pharma: Delivery Strategies for Nutraceuticals

    With growing prevalence of lifestyle-associated diseases, including obesity, Type II diabetes and cardiovascular disease, there is an urgent need and demand to try to prevent the onset of these diseases within our growing population. Nutraceuticals, along with appropriate diet and exercise, ... more

  • Companies

    Royal Society of Chemistry (RSC)

    The RSC is a leading international publisher of highly regarded journals and books in the chemical sciences. The RSC is also the professional body for chemists with a global membership of over 46,000. more