07-Jul-2015 - Technische Universität Wien - Institut für Verbrennungskraftmaschinen u. Kraftfahrzeugbau

Good Quantum States and Bad Quantum States

A theoretical trick allows scientists to describe quantum states of thousands of atoms. If standard methods were used, all storage capacity in the world would not be enough to do this.

For a long time, quantum experiments were only carried out with a small number of particles. Even the behaviour of single atoms or molecules can be very hard to describe. Today, it has become possible to control several thousand atoms in an experiment, but for theoretical calculations this entails serious problems. The quantum state of such a large system is so complicated that all matter on earth would not be enough to store it in a classical way.

In the journal “Nature Communications”, scientists from the TU Wien (Vienna) and the Free University of Berlin now present a quantum tomography method, which makes it possible to measure and describe the state of a large quantum system very precisely with just a few measurements. The basic idea behind this new technique is simple: even though the system can be in one of unimaginably many quantum states, it is a very good approximation to ignore most of them.

Many Particles, Many States

The result of a coin toss is either heads or tails. The behaviour of quantum particles, however, is much more complicated. When a quantum system can be in two different states, any mixture of these states is also a physically allowed state. Therefore it is much more complicated to describe the state of a quantum particle than it is to describe the state of a coin lying on the table.

“The larger the number of particles, the more complicated the description of the systems becomes”, says Professor Jörg Schmiedmayer from the Vienna Center for Quantum Science and Technology (VCQ) at TU Wien. “The storage capacity required to describe a quantum state grows exponentially with the number of particles. For a system of several hundred quantum particles, there are more possible quantum states than there are atoms in the universe. It is absolutely impossible to write down such a state or to do calculations with it.”

But exactly knowing the quantum state is not always necessary. The new theoretical method, developed in Berlin by Professor Jens Eisert’s research group, uses a special kind of description for the quantum states – the so called “continuous matrix product states” (cMPS). This special class of states only represents a vanishingly small fraction of all possible states, but from a physical point of view they are particularly important. “This class contains states with realistic quantum entanglement”, says Jens Eisert. “Exotic, complicated entanglement patterns between many quantum particles may in principle be possible, but in practice they do not show up in physical systems. That is why we can limit ourselves to the cMPS in our calculations.”

For any possible quantum state, there is a cMPS arbitrarily close to the true quantum state. No matter which state is really occupied by the system – the error that occurs by only taking into account the cMPS can be made arbitrarily small. “It is like fractions in mathematics”, says Eisert. “The rational numbers, which can be written as fractions, only represent a tiny part of all real numbers. But for any real number, a fractional number can be found which comes arbitrarily close.” The number pi is not a fractional number – but the approximation for pi used by a pocket calculator is. For all practical purposes, this is good enough.

Measurements Yielding a Quantum Picture

By restricting oneself to the cMPS, it becomes possible to read out the state of a large quantum system in an experiment. “We cannot gain complete knowledge about the system from a finite number of measurements, but that is also not what we need”, says Tim Langen, who led the experiments in Schmiedmayer’s research group. “With our new method, we can reconstruct the quantum state from only a few measurements. The precision is so high that we can use this approximate state to predict the result of further measurements.” This technique is called “quantum tomography” – much like computer tomography in a hospital, where several pictures are used to calculate a 3D model,  quantum tomography uses several measurements to calculate a picture of the quantum state.

The new method does not only open up new possibilities for many-body quantum physics. It could also path the way to new quantum simulators – quantum systems, which are prepared in such a way that they can be used to simulate other quantum systems that cannot be controlled by standard methods. “When two different quantum systems can be described with the same basic formulas, then we can learn a lot about one system by studying the other”, says Schmiedmayer. “We can control thousands of atoms on our quantum chip, this system is thus very well suited for future quantum simulations.”

Technische Universität Wien - Institut für Verbrennungskraftmaschinen u. Kraftfahrzeugbau

Request information now

Recommend news PDF version / Print Add news to watchlist

Share on

Facts, background information, dossiers
  • quantum particles
  • quantum physics
More about TU Wien
  • News

    A Sandblaster at the Atomic Level

    From semiconductors to moon rocks: Many materials are treated with ion beams. A research group at TU Wien has now been able to explain how this process depends on the roughness of the surface. If you want to remove a layer of paint from a metal surface, you can use a sandblaster: Countless ... more

    Anchoring single atoms

    There is a dictum to “never change a running system”. New methods can however be far superior to older ones. While to date chemical reactions are mainly accelerated by catalytic materials that comprise several hundreds of atoms, the use of single atoms could provide a new approach for catal ... more

    How ions get their electrons back

    Very unusual atomic states are produced at TU Wien: Ions are created by removing not just one but 20 to 40 electrons from each atom. These “highly charged ions” play an important role in current research. For a long time, people have been investigating what happens when such highly charged ... more

  • Videos

    Epoxy Resin

    A flash of ultraviolet light sets off a chain reaction which hardens the whole object. more


    The coating machine Noreia was built at TU Wien. This time-lapse video shows the construction process. more

    Shaping Drops: Control over Stiction and Wetting

    Some surfaces are wetted by water, others are water-repellent. TU Wien (Vienna), KU Leuven and the University of Zürich have discovered a robust surface whose adhesive and wetting properties can be switched using electricity. This remarkable result is featured on the cover of Nature magazin ... more

More about Freie Universität Berlin
  • News

    Physicists develop miniature terahertz sources

    Researchers at Martin Luther University Halle-Wittenberg (MLU) and Freie Universität Berlin have developed a new, simple approach for generating terahertz radiation. Strong optical laser pulses enable terahertz electromagnetic fields to be generated directly at a specific point. The team ha ... more

    Attosecond Electron Catapult

    A team of physicists and chemists from the University of Rostock, the Laboratory of Attosecond Physics at the Ludwig-Maximilians-Universität, the Max Planck Institute of Quantum Optics, and Freie Universität Berlin has studied the interaction of light with tiny glass particles. The relation ... more

    An assembly line for medications

    Researchers at the Max Planck Institute of Colloids and Interfaces (MPICI) and the Freie Universität Berlin have succeeded in developing better methods of producing APIs (active pharmaceutical ingredients). As a result, Efavirenz, one of the preferred agents for treating HIV in combination ... more