22-Feb-2016 - King Abdullah University of Science and Technology (KAUST)

Smart skin made of recyclable materials may transform medicine and robotics

Smart skin that can respond to external stimuli could have important applications in medicine and robotics. Using only items found in a typical household, researchers have created multi-sensor artificial skin that's capable of sensing pressure, temperature, humidity, proximity, pH, and air flow.

The flexible, paper-based skin is layered onto a post-it note, with paper, aluminum foil, lint-free wipes, and pencil lines acting as sensing components. Being made of recyclable materials, this paper skin presents a large number of sensory functions in a cheap and environmentally friendly way.

"Democratization of electronics will be key in the future for its continued growth. In that regard, a skin-type sensory platform made with recyclable materials only demonstrates the power of human imagination," said Prof. Muhammad Mustafa Hussain, senior author of the Advanced Materials Technologies paper. "This is the first time a singular platform shows multi-sensory functionalities close to that of natural skin. Additionally they are being read or monitored simultaneously like our own skin."

Facts, background information, dossiers
  • medicine
  • King Abdullah Unive…
More about King Abdullah University of Science and Technology
  • News

    Easing oxygen's evolution

    A metal foam could underpin a low-cost method for generating carbon-free fuels, researchers from KAUST have shown. The team seamlessly coated the foam with iron and cobalt nanomaterials to create a highly active electrode for a device that splits water molecules to release oxygen and hydrog ... more

    Shrimply the best composite membranes

    Shrimp shells, plant extracts and recycled plastic have helped KAUST researchers to build a sustainable thin-film composite membrane that could replace conventional membranes whose environmental toll is greater. Thin-film composite membranes are widely used in applications such as wastewate ... more

    Making light work of emerging micropollutants

    Carbon-based organic micropollutants in water can be removed by treatment with high-intensity pulses of light in a procedure developed and demonstrated by researchers at KAUST. This photodegradation process was already known to be feasible, but its use was limited by the long treatment time ... more

More about Wiley