15-Mar-2016 - Universität Wien

The "great smoky dragon" of Quantum Physics

Physicists evaluated the quantum delayed-choice experiments for the first time

Physicists around Anton Zeilinger have, for the first time, evaluated the almost 100-year long history of quantum delayed-choice experiments – from the theoretical beginnings with Albert Einstein to the latest research works in the present.

Since the 17th century, science was intrigued by the nature of light. Isaac Newton was certain that it consists of a stream of particles. His contemporary Christiaan Huygens, however, argued that light is a wave. Modern quantum physics says that both were right. Light can be observed both as particles and as waves – depending which characteristic is measured in an experiment, it presents itself more as one or the other. This so-called wave-particle dualism is one of the foundational principles of quantum physics. This questions our common sense: can one and the same indeed be of two contradictory natures at the same time?

Measuring the undefined

In the 1970s, the American physicist John Archibald Wheeler (1911–2008) metaphorically compared the fundamental indefiniteness of quantum mechanical phenomena with a "great smoky dragon": One can see the tail, that is the source of the particles, and the head, which are the measurement results. But in between the whole body is covered in smoke. And this smoke cannot be removed: Only the measurement defines the phenomenon, not the other way round. To put this concept into a concrete setting, Wheeler proposed his famous delayed-choice thought experiment. In this thought experiment, the choice to determine the particle or wave nature is delayed or even changed during the experiment. Thereby, one and the same phenomenon, for instance light, manifests itself as a particle or as a wave in the same experiment. It can therefore indeed be both, depending on the time and nature of the measurement.

In the past decades, quantum physicists have tried to experimentally test Wheeler’s thought experiment to empirically substantiate the wave-particle duality. Xiao-song Ma from the Nanjing University, Johannes Kofler from the Max Planck Institute of Quantum Optics, and Anton Zeilinger from the University of Vienna and the Institute for Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences have now shown the success of this endeavor in an extensive study, which sums up and evaluates the whole history of delayed choice experiments.

While the concept of wave-particle duality can be traced back to Albert Einstein’s explanation of the photoelectric effect via photons in 1905, it took until the 1980s that the first delayed-choice experiments were realized. "Only through the development of modern quantum optical techniques for the fast and precise measurement of light it was possible to put Wheeler’s thought experiment into practice", says Xiao-song Ma, lead author of the study.

Important for quantum cryptography and quantum computers

"Experiments of this kind confront us with fundamental questions of quantum physics", adds Anton Zeilinger. "However, they also have significance for future applications such as in quantum cryptography or the development of quantum computers." Delayed-choice experiments can be applied to the quantum mechanical phenomenon of entanglement, which is important for the security of quantum communication. Regarding quantum computers, there are certain scenarios where delayed-choice experiments can increase the computation speed. The authors of the study, which now appeared in the journal "Reviews of Modern Physics", expect that delayed-choice experiments will continue to bring further insights into quantum physics as well as practical applications for technologies basing on them.

Facts, background information, dossiers
  • quantum physics
  • light
  • quantum computers
  • quantum communication
  • Nanjing University
More about Universität Wien
More about Nanjing University
  • News

    New 3D chirality discovered and synthetically assembled

    The origin of lives of human beings, animals and plants on earth is attributed to chirality because it is necessitated for the formation of biomolecules, such as nucleic acids, proteins, carbohydrates, etc. The studies on chirality have been becoming increasingly active and extensive due to ... more

    4D imaging with liquid crystal microlenses

    Most images captured by a camera lens are flat and two dimensional. Increasingly, 3D imaging technologies are providing the crucial context of depth for scientific and medical applications. 4D imaging, which adds information on light polarization, could open up even more possibilities, but ... more

    All in one against CO2

    A "self-heating" boron catalyst that makes particularly efficient use of sunlight to reduce carbon dioxide (CO2) serves as a light harvester, photothermal converter, hydrogen generator, and catalyst in one. Researchers introduce a photothermocatalytic reaction that requires no additives bey ... more

More about Österreichische Akademie der Wissenschaften
  • News

    Quantum gas turns supersolid

    Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly lon ... more

    Particle Zoo in a Quantum Computer

    Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary parti ... more

    ERC-Grant for quantum physicist Jörg Schmiedmayer

    With his research on quantum states in the realm between order and disorder, Professor Jörg Schmiedmayer's work has raised quite a stir; ultra cold atom clouds with a high degree of order approach a disordered thermal equilibrium. During this transition they spend some time in an astonishin ... more

More about MPI für Quantenoptik
  • News

    The next phase of the proton puzzle

    Scientists at the Max Planck Institute of Quantum Optics (MPQ) have succeeded in testing quantum electrodynamics with unprecedented accuracy to 13 decimal places. The new measurement is almost twice as accurate as all previous hydrogen measurements combined and moves science one step closer ... more

    Laser takes pictures of electrons in crystals

    Microscopes of visible light allow us to see tiny objects such living cells and their interior. Yet, they cannot discern how electrons are distributed among atoms in solids. Now researchers around Prof. Eleftherios Goulielmakis of the Extreme Photonics Labs at the University of Rostock and ... more

    An ultrafast glimpse of the photochemistry of the atmosphere

    Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols. The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay be ... more