13-Oct-2016 - Shanghai Jiao Tong University (SJTU)

Cicada wings inspire antireflective surfaces

A team of Shanghai Jiao Tong University researchers has used the shape of cicada wings as a template to create antireflective structures fabricated with one of the most intriguing semiconductor materials, titanium dioxide (TiO2). The antireflective structures they produced are capable of suppressing visible light -- 450 to 750 nanometers -- at different angles of incidence.

Why cicada wings? The surfaces of the insect's wings are composed of highly ordered, tiny vertical "nano-nipple" arrays, according to the researchers. As they report the resulting biomorphic TiO2 surface they created with antireflective structures shows a significant decrease in reflectivity.

"This can be attributed to an optimally graded refractive index profile between air and the TiO2 via antireflective structures on the surface," explained Wang Zhang, associate professor at State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University in China.

Small spaces between the ordered nano-antireflective structures "can be thought of as a light-transfer path that let incident light rays into the interior surface of the biomorphic TiO2 - allowing the incident light rays to completely enter the structure," Zhang continued. "The multiple reflective and scattering effects of the antireflective structures prevented the incident light from returning to the outside atmosphere."

Significantly, the team's work relies on "a simple and low-cost sol-gel (wet chemical) method to fabricate biomorphic TiO2 with precise subwavelength antireflective surfaces," Zhang pointed out. "The TiO2 was a purely anatase phase (a mineral form of TiO2), which has unique antireflective surfaces. This led to an optimally graded refractive index and, ultimately, to angle-dependent antireflective properties within the visible light range."

In terms of applications, the team's biomorphic TiO2 antireflective structures "show great potential for photovoltaic devices such as solar cells," Zhang said. "We expect our work to inspire and motivate engineers to develop antireflective surfaces with unique structures for various practical applications."

Even after high calcination at 500 C, the antireflective structures retain their morphology and high-performance antireflection properties. These qualities should enable the coatings to withstand harsh environments and make them suitable for long-term applications.

In the future, the team plans "to reduce the optical losses in solar cells by using materials with a higher refractive index such as tantalum pentoxide or any other semiconductor materials," Zhang said.

Facts, background information, dossiers
More about Shanghai Jiao Tong University
  • News

    Microrobot collectives display versatile movement patterns

    Collective behavior and swarm patterns are found everywhere in nature. Robots can also be programmed to act in swarms. Researchers at the Max Planck Institute for Intelligent Systems (MPI-IS), Cornell University and Shanghai Jiao Tong University have developed collectives of microrobots whi ... more

    Butterfly wings' 'art of blackness' could boost production of green fuels

    Butterfly wings may rank among the most delicate structures in nature, but they have given researchers powerful inspiration for new technology that doubles production of hydrogen gas — a green fuel of the future — from water and sunlight. The researchers presented their findings at the Amer ... more

    Full steam ahead for paddlewheels

    Non-interconvertible, conformational isomers in a paddlewheel dimetallic framework have been synthesised by scientists in the US and China. Conformational isomers are molecules with the same atomic constitution and configurations, but they differ by their arrangement in space. The atoms i ... more

More about American Institute of Physics
  • News

    Solar cell keeps working long after sun sets

    About 750 million people in the world do not have access to electricity at night. Solar cells provide power during the day, but saving energy for later use requires substantial battery storage. In Applied Physics Letters, by AIP Publishing, researchers from Stanford University constructed a ... more

    Turning plastic grocery bags into sustainable fuel

    More than 300 million tons of plastic waste are produced annually, which causes serious environmental issues because of plastic's life cycle and the difficulty of eliminating it. Consequently, most plastic waste ends up in either a landfill or the ocean. A significant number of plastics bre ... more

    Turning hazelnut shells into potential renewable energy source

    Biomass is attracting growing interest from researchers as a source of renewable, sustainable, and clean energy. It can be converted into bio-oil by thermochemical methods, such as gasification, liquefaction, and pyrolysis, and used to produce fuels, chemicals, and biomaterials. In Journal ... more