To use all functions of this page, please activate cookies in your browser.
my.chemeurope.com
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
EDTA
EDTA is a widely-used abbreviation for the chemical compound ethylenediaminetetraacetic acid (and many other names, see table). EDTA refers to the chelating agent with the formula (HO2CCH2)2NCH2CH2N(CH2CO2H)2. This amino acid is widely used to sequester di- and trivalent metal ions. EDTA binds to metals via four carboxylate and two amine groups. EDTA forms especially strong complexes with Mn(II), Cu(II), Fe(III), and Co(III).[1] Additional recommended knowledge
SynthesisEDTA is mostly synthesised from 1,2-diaminoethane (ethylenediamine), formaldehyde (methanal), water and sodium cyanide.[2] This yields the tetra sodium salt, which can be converted into the acidic forms by acidification. Pioneering work on the development of EDTA was undertaken by Gerold Schwarzenbach in the 1940's.[3] Popular vs. chemical nomenclatureTo describe EDTA and its various protonated forms, chemists use a more cumbersome but more precise acronym that distinguishes between EDTA4−, the conjugate base that is the ligand, and H4EDTA, the precursor to that ligand. Coordination chemistry principlesIn coordination chemistry, H4EDTA is a member of the aminocarboxylate family of ligands that includes imidodiacetic acid ("H2IDA") and nitrilotriacetic acid ("H3NTA"). More specialized relatives include N,N'-ethylenediaminediacetic acid ("H2EDDA") and 1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid ("H4CyDTA"). These ligands are all formally derived from the amino acid glycine. H4EDTA forms highly stable coordination compounds that are soluble in water. In these complexes, the ligand is usually either hexa- or pentadentate, EDTA4− or HEDTA3−, respectively. Such complexes are chiral, and [Co(EDTA)]− has been resolved into enantiomers.[4] UsesIn 1999, the annual consumption of EDTA was equivalent to about 35,000 tons in Europe and 50,000 tons in the US.[citation needed] The most important uses are:
More specialised uses of EDTA are:
Medicine:
In laboratory science, EDTA is also used for:
Toxicity
Environmental behaviorWidespread use of EDTA and its slow removal under many environmental conditions has led to its status as the most abundant anthropogenic compound in many European surface waters. River concentrations in Europe are reported as 10-100 μg/L, and lake concentrations are in the 1-10 μg/L range. EDTA concentrations in U.S. groundwater receiving wastewater effluent discharge have been reported at 1-72 μg/L, and EDTA was found to be an effective tracer for effluent, with higher concentrations of EDTA corresponding to a greater percentage of reclaimed water in drinking water production wells. EDTA is not degraded or removed during conventional wastewater treatment. However, an adjustment of pH and sludge residence time can result in almost complete mineralization of EDTA. A variety of microorganisms have been isolated from water, soils, sediments and sludges that are able to completely mineralize EDTA as a sole source of carbon, nitrogen and energy. Recalcitrant chelating agents such as EDTA are an environmental concern predominantly because of their persistence and strong metal chelating properties. The presence of chelating agents in high concentrations in wastewaters and surface waters has the potential to remobilize heavy metals from river sediments and treated sludges, although low and environmentally relevant concentrations seem to have only a very minor influence on metal solubility. Low concentrations of chelating agents may either stimulate or decrease plankton or algae growth, while high concentrations always inhibit activity. Chelating agents are nontoxic to many forms of life on acute exposure; the effects of longer-term low-level exposure are unknown. EDTA at elevated concentrations is toxic to bacteria due to chelation of metals in the outer membrane. EDTA ingestion at high concentrations by mammals changes excretion of metals and can affect cell membrane permeability. Methods of detection and analysisThe most sensitive method of detecting and measuring EDTA in biological samples is selected-reaction-monitoring capillary-electrophoresis mass-spectrometry (abbreviation SRM-CE/MS) which has a detection limit of 7.3 ng/mL in human plasma and a quantitation limit of 15 ng/mL.[6] This method works with sample volumes as small as ~7-8 nL.[6] EDTA has also been measured in non-alcoholic beverages using high performance liquid chromatography (HPLC) which has a detection limit of 0.6 μg/mL and a quantitation limit of 2.0 μg/mL.[7][8] Forensics
See alsoReferences
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=12396676&dopt=AbstractPlus Categories: Chelating agents | Preservatives | Antidotes | Carboxylic acids | Amines |
|||||||||||||||||||||||||||||||||||||||||
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "EDTA". A list of authors is available in Wikipedia. |
- The_Hype_about_Hydrogen
- Ekman_transport
- A nanoscale view of bubble formation - A new model now describes the boiling process with much greater precision
- Carnegie Institution for Science - Washington, USA
- Researchers demonstrate label-free super-resolution microscopy - Imaging method measures particle size and position with nanometer precision