My watch list  

Hypoxia-inducible factors

hypoxia-inducible factor 1, alpha subunit
Symbol HIF1A
Entrez 3091
HUGO 4910
OMIM 603348
RefSeq NM_001530
UniProt Q16665
Other data
Locus Chr. 14 q21-q24
hypoxia inducible factor 3, alpha subunit
Symbol HIF3A
Entrez 64344
HUGO 15825
OMIM 609976
RefSeq NM_152794
UniProt Q9Y2N7
Other data
Locus Chr. 19 q13

Hypoxia-inducible factors (HIFs) are transcription factors that respond to changes in available oxygen in the cellular environment, in specific, to decreases in oxygen, or hypoxia.



Most, if not all, oxygen-breathing species express the highly-conserved transcriptional complex HIF-1, which is a heterodimer composed of an alpha and a beta subunit, the latter being a constituitively-expressed aryl hydrocarbon receptor nuclear translocator (ARNT). HIF-1 belongs to the PER-ARNT-SIM (PAS) subfamily of the basic-helix-loop-helix (bHLH) family of transcription factors.

Responsive action

The alpha subunit of HIF-1 is a target for prolyl hydroxylation by HIF prolyl-hydroxylase, which makes HIF-1 α a target for degradation by the E3 ubiquitin ligase complex, leading to quick degradation by the proteasome. This occurs only in normoxic conditions. In hypoxic conditions, HIF prolyl-hydroxylase is inhibited, since it utilizes oxygen as a cosubstrate.

Hypoxia also results in a buildup of succinate, due to inhibition of the electron transport chain in the mitochondria. The buildup of succinate further inhibits HIF prolyl-hydroxylase action, since it is an end-product of HIF hydoxylation. In a similar manner, inhibition of electron transfer in the succinate dehydrogenase complex due to mutations in the SDHB or SDHD genes can cause a build-up of succinate that inhibits HIF prolyl-hydroxylase, stabilizing HIF-1 α. This is termed pseudohypoxia.

HIF-1, when stabilized by hypoxic conditions, upregulates several genes to promote survival in low-oxygen conditions. These include glycolysis enzymes, which allow ATP synthesis in an oxygen-independent manner, and vascular endothelial growth factor (VEGF), which promotes angiogenesis. HIF-1 acts by binding to HIF-responsive elements (HREs) in promoters that contain the sequence NCGTG.

In general, HIFs are vital to development. In mammals, deletion of the HIF-1 genes results in perinatal death. HIF-1 has been shown to be vital to chondrocyte survival, allowing the cells to adapt to low-oxygen conditions within the growth plates of bones.

See also

  • HIF1A


  • Wang GL, Jiang BH, Rue EA, Semenza GL (1995). "Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension". Proc. Natl. Acad. Sci. U.S.A. 92 (12): 5510-4. PMID 7539918.
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Hypoxia-inducible_factors". A list of authors is available in Wikipedia.
Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE