07-Sep-2009 - Friedrich-Schiller-Universität Jena

UMBRELLA against heavy metals

Microbiologist at Jena University coordinates new EU research collaboration

"Please take" - as simple as following a recipe in a cook book, soils containing heavy metals could be remediated in the future: Depending on the kind of contamination and the conditions on the site in question, the best remediation recipe can be put together - that is the goal of a recently started research project. UMBRELLA is the name of the project that is coordinated at the Friedrich Schiller University Jena. The acronym UMBRELLA stands for "Using MicroBes for the REgulation of heavy metaL mobiLity at ecosystem and landscape scAle", indicating how to regulate heavy metal contamination by means of microbes.

"We want to develop a tool-box from which suitable parts can be chosen to remediate contaminated soils", says Prof. Dr. Erika Kothe from the University of Jena. The Professor for Microbial Phytopathology coordinates the international UMBRELLA team uniting 13 partners from eight European countries. Within the 7th Framework Programme of the European Commission, the project is funded within a volume of almost EUR 3 million for the next three years. Besides Prof. Kothe's team, geoscientists around Prof. Dr. Büchel from Jena University are involved in UMBRELLA as well.

By "tools" for the soil clean-up the microbiologist Kothe means, of course, microorganisms. The principle is simple: Bacteria and fungi take up heavy metals, like e.g. cadmium, nickel or copper, from the soil and store them. "This way, toxic substances are bound at least temporarily to microbes, relieving output into rivers and ground water", explains Prof. Kothe the effects of the "umbrella" against heavy metals. Apart from microorganisms, also suitable plants will be provided to remove the metals from the soil.

Such useful bacteria and plants can be found wherever there are heavy metals in the ground, for instance in the contaminated soils of the "Wismut" region - the former uranium ore mining area in eastern Thuringia and Saxony. To detect and characterize them systematically will be the focus of UMBRELLA. But not only there. "Throughout Europe we want to investigate six former mining districts", states Prof. Kothe. Apart from the "Wismut" mine waste dumps, the scientists will examine contaminated areas in Rumania, Sweden, Great Britain, Poland and Italy.

At first, those microorganisms and plants withdrawing heavy metals from the soil most efficiently must be identified - depending on the climatic, biological and geological conditions. "On a long-term basis, we want to improve and generalize existing remedial processes", explains Kothe. The microbiologist from Jena University regrets that current guide lines tend to look at soil and water protection separately. "UMBRELLA aims at a more holistic picture, relating the source of contamination to its entry and transport in ground water or rivers up to landscape level modeling." This is why the researchers also collaborate with appropriate authorities, for instance with the Thuringian Institution for Environment and Geology (Thüringer Landesanstalt für Umwelt und Geologie, TLUG).

Facts, background information, dossiers
  • Italy
  • guide lines
  • geology
  • Geologie
  • fungi
  • European Commission
More about Uni Jena
  • News

    Melting glasses from unmeltable compounds

    Chemists at the University of Jena are developing a way of melting normally unmeltable metal-organic framework compounds – so-called MOFs. This allows the melt-based production of glass components for applications in energy and environmental technology. Glasses are an indispensable part of ... more

    High-speed modulation thanks to crystal symmetry

    Nonlinear optics is of paramount importance in numerous fields of science and technology, in particular for second harmonic generation, namely the process of frequency doubling of a light beam. For instance, this process turns invisible infrared light into the visible light cursor of a lase ... more

    Producing hydrogen using less energy

    The way in which a compound inspired by nature produces hydrogen has now been described in detail for the first time by an international research team from the University of Jena and the University of Milan-Bicocca. These findings are the foundation for the energy-efficient production of hy ... more