29-Nov-2018 - Christian-Albrechts-Universität zu Kiel (CAU)

How frogs' tongues become sticky

Research team investigates the surface chemistry of the frog sticky-tongue mechanism

Frogs' capture their prey with the sticky mucus covering their tongues, but this mucus isn't inherently adhesive. Frog mucus is thought to be pressure-sensitive, with tongue retraction strain triggering adhesion. A research team from Oregan State University, Aarhus University and Kiel University has now observed mucus stuck to prey to form fibrils, leading to the hypothesis that glycosylated mucin proteins are reordered by tongue retraction. Understanding the chemical mechanism of this process can inform design of biomimetic materials, and so the scientists have used new techniques to examine the surface chemistry of frog tongues.

"We are able to take a chemical image of the frog tongue print and then look at the outer four to five nanometers of the surface. Our techniques are really surface sensitive, and that's where we think most of the action takes place," said co-author Joe E. Baio, whose group was involved in developing the near-edge x-ray absorption fine structure (NEXAFS) microscopy techniques used in this study. NEXAFS and sum frequency generation of vibrational spectra enabled analysis of the interfacial chemistry of'mucus prints'. These prints were gathered by the Group of Professor Stanislav Gorb from Kiel University, who also inspired the study. They tempted horned frogs into launching their tongues at crickets cunningly placed behind glass microscope slides. 

„Afterwards we analysed these prints chemically. This way we can explain the physical-chemical processes on frog tongues for the first time and futher contribute to the understanding of the pressure sensitivity of the mucus", says Gorb.

The group found that the secondary structures of frog tongue mucins are randomly arranged, but upon tongue retraction, molecules align into well-ordered fibrils. With hydrophobic groups orientated towards the slide surface and hydrophilic groups towards the mucus bulk. "The physical input changes the chemistry of the mucus and that's how it turns the glue on," said Baio.

Next, the team consisting of zoologists, chemists and physicists wants to find the specific mucin sequence in order to replicate the inherent reversibility inartificial pressure-sensitive adhesives.

Facts, background information, dossiers
More about Christian-Albrechts-Universität zu Kiel
  • News

    Microplastics transport metallic pollutants

    There are a relatively large number of studies on the accumulation and transport of persistent organic pollutants by microplastics, which has resulted in good data in this regard. Data, however, on the accumulation of metals that are toxic to the environment are very rare and sometimes scie ... more

    Excitation of robust materials

    In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials are characterised by special electronic properties, which are also very robust against external perturbations. This material group al ... more

    Energy of the future: photosynthetic hydrogen from bacteria

    The transition from fossil fuels to a renewable energy supply is one of the most important global challenges of the 21st century. In order to achieve the internationally-agreed target of limiting global warming to a maximum of 1.5 degrees, the international community must drastically reduce ... more

More about University of Oregon
More about Aarhus University
  • News

    Nanobubbles in nanodroplets

    A team headed by Professor Frank Stienkemeier at Freiburg’s Institute of Physics and Dr. Marcel Mudrich, professor at the University of Aarhus in Denmark, has observed the ultrafast reaction of nanodroplets of helium after excitation with extreme ultraviolet radiation (XUV) using a free-ele ... more

    Simpler and safer method for handling a useful but foul-smelling gas in chemical synthesis

    The chemical element sulfur is an important constituent in many pharmaceuticals and, consequently, it is desirable to be able to introduce sulfur-containing fragments efficiently in a broad range of chemical compounds. The Skrydstrup team provides an effective and safe way for introducing a ... more

    A patent-free playground

    Along with a number of leading Danish industrial companies, Aarhus University has opted out of the patent rat race in a new collaboration on industrially relevant basic research. Researchers and companies from all over Denmark publish all their results and data on the innovative Open Scienc ... more