19-Feb-2020 - Technische Universität Dresden

Scientists succeeds in producing dodecacene for the first time

World record in research on π-electron structures

A team of international scientists led by of Francesca Moresco (Center for Advancing Electronics Dresden – cfaed at TU Dresden) and Diego Peña Gil (Center for Research in Biological Chemistry and Molecular Materials – CiQUS at University of Santiago de Compostela) has achieved a breakthrough in the field of π-electron structures research. For the first time, they synthesised a chain of twelve benzene rings, called dodecacene, which is the longest acene ever obtained to date. This was made possible by using on-surface synthesis and observed by scanning tunneling microscopy. The investigation of the properties of higher acenes also revealed an unexpected increase in the energy gap of dodecacene.

An international team of researchers from TU Dresden, University of Santiago de Compostela, and CEMES-CNRS Institute in Toulouse has succeeded in synthesising a chain of twelve benzene rings, the so-called dodecane by on-surface deoxygenation of a stable precursor molecule. Using scanning tunnelling microscopy and spectroscopy, the researchers also examined the electronic properties of dodecacenes. Surprisingly, their experiments showed that the energy gap remains constant for decacenes and undecacenes, but increases again for dodecacene. This phenomenon is particularly interesting for future research in molecular electronics and spintronics.

What are acenes and why are higher acenes so relevant but complicated?

Acenes are organic compounds, more precisely polycyclic aromatic hydrocarbons consisting of a varying number of linear fused benzene rings. The acene series represents a model system to investigate the intriguing electronic properties of extended π-electron structures in the one-dimensional limit, which are important for applications in electronics and spintronics and for the fundamental understanding of electronic transport.

Especially higher acene series are currently of great interest in research because of their special electronic properties. Recent research efforts suggest a higher radical character as well as the stabilisation of the optical excitation energy for an increasing number of secured benzene rings, which is very attractive for nanoelectronic devices. However, they are difficult to synthesise, because they are chemically very reactive, therefore unstable, and not soluble.

Facts, background information, dossiers
  • Deoxygenation
  • polycyclic aromatic…
More about TU Dresden
  • News

    Flowers of St. John's Wort serve as green catalyst

    An interdisciplinary team of scientists from the School of Science at TU Dresden has for the first time used dried flowers of St. John's Wort (genus Hypericum) as an active catalyst in various photochemical reactions. This conceptually new and sustainable process was registered as a German ... more

    Ionic defect landscape in perovskite solar cells revealed

    The group of so-called metal halide perovskites as materials has revolutionized the field of photovoltaics in recent years. Generally speaking, metal halide perovskites are crystalline materials that follow the structure ABX3, with varying composition. Here, A, B, and X can represent a comb ... more

    Microswimmers move like moths to the light

    The Freigeist group at TU Dresden, led by chemist Dr Juliane Simmchen, has studied an impressive behavior of synthetic microswimmers: as soon as the photocatalytic particles leave an illuminated zone, they flip independently and swim back into the light. This promising observation and its a ... more

More about Universidade de Santiago de Compostela
  • News

    Researchers obtain decacene, the largest acene synthesised ever

    Acenes are molecules formed by the linear fusion of special carbon-based hexagons, widely known as ‘benzene rings’. In spite of its structural simplicity, these molecules have attracted huge attention due to their unique electronic properties; pentacene, for example, a member of this family ... more