25-Feb-2020 - Aalto University

The combination of plant-based particles and water forms an 'eco' super-glue

In a study published in Advanced Materials, researchers at Aalto University, the University of Tokyo, Sichuan University, and the University of British Columbia have demonstrated that plant-derived cellulose nanocrystals (CNCs) can form an adhesive that fully integrates the concepts of sustainability, performance, and cost which are generally extremely challenging to achieve simultaneously.

Unlike Superglue, the new eco glue develops its full strength in a preferred direction, similar to "Peel and Stick" adhesives. When trying to separate the glued components along the principal plane of the bond, the strength is more than 70 times higher when compared to the direction perpendicular to that plane. All of this means that just a single drop of the "eco" glue has enough strength to hold up to 90kg weight, but can still be easily removed by the touch of a finger, as needed. As Dr Blaise Tardy from the Aalto Department of Bioproducts and Biosystems puts it, 'The ability to hold this amount of weight with just a few drops is huge, especially from a natural plant-based solution'.

These kind of properties are useful in protecting fragile components in machines that can undergo sudden physical shock such as high-value components in microelectronics, to increase the reusability of valuable structural and decorative elements, in new solutions for packaging applications, and - in general - for the development of greener adhesive solutions.

Producing a comparable product to a market leader at low cost and with new properties

Furthermore, compared to the current approach of making high-strength glues that can involve complex and expensive routes, the team has demonstrated that their solution is just taking biobased particles sources from plants (with a comparatively negligible cost) and just adding water. Since curing time is associated with evaporation of the water phase (~2 hours, currently), it can be controlled, for instance, with heat.

Aalto Professor Orlando Rojas says, 'Reaching a deep understanding on how the cellulose nanoparticles, mixed with water, to form such an outstanding adhesive is a result of the work between myself, Dr Tardy, Luiz Greca, Professor Hirotaka Ejima, Dr Joseph J. Richardson and Professor Junling Guo and it highlights the fantastic collaboration and integration of knowledge towards the development of an extremely appealing, low-cost and safe application'.

'Good, green packaging with bad glue still renders the packaging bad' - Dr Blaise Tardy

Moreover, the prospects for worldwide utilisation (in a 40B€ industry) is quite attractive given the ever-increasing production of cellulose nanocrystals seen across the globe, as supported by incentives in the framework of the circular bioeconomy.

Dr Tardy adds, 'The truly exciting aspect of this is that although our new adhesive can be sourced directly from residual biomass, such as that from the agro-industry or recycled paper; it outperforms currently available commercial synthetic products by a great many measures'.

Facts, background information, dossiers
More about Aalto University
  • News

    Non-toxic technology extracts more gold from ore

    Gold is one of the world’s most popular metals. Malleable, conductive and non-corrosive, it’s used in jewelry, electronics, and even space exploration. But traditional gold production typically involves a famous toxin, cyanide, which has been banned for industrial use in several countries.  ... more

    A new form of carbon

    Carbon exists in various forms. In addition to diamond and graphite, there are recently discovered forms with astonishing properties. For example graphene, with a thickness of just one atomic layer, is the thinnest known material, and its unusual properties make it an extremely exciting can ... more

    Battery parts can be recycled without crushing or melting

    The proliferation of electric cars, smartphones, and portable devices is leading to an estimated 25 percent increase globally in the manufacturing of rechargeable batteries each year. Many raw materials used in the batteries, such as cobalt, may soon be in short supply. The European Commiss ... more

  • Videos

    Researchers create a tiny laser using nanoparticles - Aalto University Research

    Researchers at Aalto University, Finland, are the first to develop a plasmonic nanolaser that operates at visible light frequencies and uses so-called dark lattice modes. more

More about University of Tokyo
  • News

    Electrons Passed Around

    Photoinduced charge transfers are an interesting electronic property of Prussian blue and some analogously structured compounds. A team of researchers has now been able to elucidate the ultrafast processes in the light-induced charge transfer between iron and manganese in a manganese-contai ... more

    Want new advanced materials?

    Believe it or not, steel has something in common with bacterial appendages: they can both undergo a special type of physical transformation that remains puzzling. Now, researchers from Japan and China have used direct microscopic observations to provide more clarity to how this transformati ... more

    Sustainable chemical synthesis with platinum

    Researchers used platinum and aluminum compounds to create a catalyst which enables certain chemical reactions to occur more efficiently than ever before. The catalyst could significantly reduce energy usage in various industrial and pharmaceutical processes. It also allows for a wider rang ... more

More about Sichuan University
  • News

    Proteins for Making Tough Rubber

    Inspired by nature, Chinese scientists have produced a synthetic analogue to vulcanized natural rubber. Their material is just as tough and durable as the original. In the journal Angewandte Chemie, they reveal the secret to their success: short protein chains attached to the side-chains of ... more

More about University of British Columbia